A203996 Symmetric matrix based on f(i,j)=min{i(j+1),j(i+1)}, by antidiagonals.
2, 3, 3, 4, 6, 4, 5, 8, 8, 5, 6, 10, 12, 10, 6, 7, 12, 15, 15, 12, 7, 8, 14, 18, 20, 18, 14, 8, 9, 16, 21, 24, 24, 21, 16, 9, 10, 18, 24, 28, 30, 28, 24, 18, 10, 11, 20, 27, 32, 35, 35, 32, 27, 20, 11, 12, 22, 30, 36, 40, 42, 40, 36, 30, 22, 12, 13, 24, 33, 40, 45, 48
Offset: 1
Examples
Northwest corner: 2...3....4....5....6....7 3...6....8....10...12...14 4...8....12...15...18...21 5...10...15...20...24...28
Programs
-
Mathematica
f[i_, j_] := Min[i (j + 1), j (i + 1)]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A203996 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A203997 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments