This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203997 #6 Jul 12 2012 00:39:54 %S A203997 2,-1,3,-8,1,4,-19,20,-1,5,-34,69,-40,1,6,-53,160,-189,70,-1,7,-76, %T A203997 305,-552,434,-112,1,8,-103,516,-1265,1560,-882,168,-1,9,-134,805, %U A203997 -2496,4235,-3828,1638,-240,1,10,-169,1184,-4445,9646 %N A203997 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i(j+1),j(i+1)} (A203996). %C A203997 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203997 (For references regarding interlacing roots, see A202605.) %e A203997 Top of the array: %e A203997 2...-1 %e A203997 3...-8.....1 %e A203997 4...-19....20....-1 %e A203997 5...-34....69....-40....1 %e A203997 6...-53....160...-189...70....-1 %e A203997 7...-76....305...-552...434...-112...1 %t A203997 f[i_, j_] := Min[i (j + 1), j (i + 1)]; %t A203997 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A203997 TableForm[m[6]] (* 6x6 principal submatrix *) %t A203997 Flatten[Table[f[i, n + 1 - i], %t A203997 {n, 1, 12}, {i, 1, n}]] (* A203996 *) %t A203997 p[n_] := CharacteristicPolynomial[m[n], x]; %t A203997 c[n_] := CoefficientList[p[n], x] %t A203997 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203997 Table[c[n], {n, 1, 12}] %t A203997 Flatten[%] (* A203997 *) %t A203997 TableForm[Table[c[n], {n, 1, 10}]] %Y A203997 Cf. A203996, A202605. %K A203997 tabl,sign %O A203997 1,1 %A A203997 _Clark Kimberling_, Jan 09 2012