This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203999 #7 Jul 12 2012 00:39:54 %S A203999 1,-1,-4,-6,1,7,27,17,-1,-10,-60,-99,-36,1,13,105,279,269,65,-1,-16, %T A203999 -162,-593,-944,-609,-106,1,19,231,1077,2405,2610,1218,161,-1,-22, %U A203999 -312,-1767,-5092,-7865,-6264,-2226,-232,1,25,405,2699,9541 %N A203999 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{i(j+1-1),j(i+1)-1} (A203998). %C A203999 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203999 (For references regarding interlacing roots, see A202605.) %e A203999 Top of the array: %e A203999 1....-1 %e A203999 -4....-6.....1 %e A203999 7.... 27....17...-1 %e A203999 -10...-60...-99...-36...1 %t A203999 f[i_, j_] := Max[i (j + 1) - 1, j (i + 1) - 1]; %t A203999 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A203999 TableForm[m[6]] (* 6x6 principal submatrix *) %t A203999 Flatten[Table[f[i, n + 1 - i], %t A203999 {n, 1, 12}, {i, 1, n}]] (* A203998 *) %t A203999 p[n_] := CharacteristicPolynomial[m[n], x]; %t A203999 c[n_] := CoefficientList[p[n], x] %t A203999 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203999 Table[c[n], {n, 1, 12}] %t A203999 Flatten[%] (* A203999 *) %t A203999 TableForm[Table[c[n], {n, 1, 10}]] %Y A203999 Cf. A203998, A202605. %K A203999 tabl,sign %O A203999 1,3 %A A203999 _Clark Kimberling_, Jan 09 2012