This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204000 #5 Mar 30 2012 18:58:07 %S A204000 1,2,2,3,5,3,4,7,7,4,5,9,11,9,5,6,11,14,14,11,6,7,13,17,19,17,13,7,8, %T A204000 15,20,23,23,20,15,8,9,17,23,27,29,27,23,17,9,10,19,26,31,34,34,31,26, %U A204000 19,10,11,21,29,35,39,41,39,35,29,21,11,12,23,32,39,44,47,47 %N A204000 Symmetric matrix based on f(i,j)=min{i(j+1)-1,j(i+1)-1}, by antidiagonals. %C A204000 A204000 represents the matrix M given by f(i,j)=min{i(j+1)-1,j(i+1)-1}for i>=1 and j>=1. See A204001 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A204000 Northwest corner: %e A204000 1...2....3....4....5....6 %e A204000 2...5....7....9....11...13 %e A204000 3...7....11...14...17...20 %e A204000 4...9....14...19...23...27 %e A204000 5...11...17...23...29...34 %t A204000 f[i_, j_] := Min[i (j + 1) - 1, j (i + 1) - 1]; %t A204000 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204000 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204000 Flatten[Table[f[i, n + 1 - i], %t A204000 {n, 1, 12}, {i, 1, n}]] (* A204000 *) %t A204000 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204000 c[n_] := CoefficientList[p[n], x] %t A204000 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204000 Table[c[n], {n, 1, 12}] %t A204000 Flatten[%] (* A204001 *) %t A204000 TableForm[Table[c[n], {n, 1, 10}]] %Y A204000 Cf. A204001, A202453. %K A204000 nonn,tabl %O A204000 1,2 %A A204000 _Clark Kimberling_, Jan 09 2012