cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204001 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i(j+1-1),j(i+1)-1} (A204000).

This page as a plain text file.
%I A204001 #6 Jul 12 2012 00:39:54
%S A204001 1,-1,1,-6,1,1,-9,17,-1,1,-12,39,-36,1,1,-15,69,-119,65,-1,1,-18,107,
%T A204001 -272,294,-106,1,1,-21,153,-515,846,-630,161,-1,1,-24,207,-868,1925,
%U A204001 -2232,1218,-232,1,1,-27,269,-1351,3783,-6017,5214
%N A204001 Array:  row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i(j+1-1),j(i+1)-1} (A204000).
%C A204001 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix.  The zeros of p(n) are real, and they interlace the zeros of p(n+1).  See A202605 for a guide to related sequences.
%D A204001 (For references regarding interlacing roots, see A202605.)
%e A204001 Top of the array:
%e A204001 1...-1
%e A204001 1...-6....1
%e A204001 1...-9....17...-1
%e A204001 1...-12...39...-36...1
%t A204001 f[i_, j_] := Min[i (j + 1) - 1, j (i + 1) - 1];
%t A204001 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t A204001 TableForm[m[6]] (* 6x6 principal submatrix *)
%t A204001 Flatten[Table[f[i, n + 1 - i],
%t A204001 {n, 1, 12}, {i, 1, n}]]  (* A204000 *)
%t A204001 p[n_] := CharacteristicPolynomial[m[n], x];
%t A204001 c[n_] := CoefficientList[p[n], x]
%t A204001 TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t A204001 Table[c[n], {n, 1, 12}]
%t A204001 Flatten[%]               (* A204001 *)
%t A204001 TableForm[Table[c[n], {n, 1, 10}]]
%Y A204001 Cf. A204000, A202605.
%K A204001 tabl,sign
%O A204001 1,4
%A A204001 _Clark Kimberling_, Jan 09 2012