This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204001 #6 Jul 12 2012 00:39:54 %S A204001 1,-1,1,-6,1,1,-9,17,-1,1,-12,39,-36,1,1,-15,69,-119,65,-1,1,-18,107, %T A204001 -272,294,-106,1,1,-21,153,-515,846,-630,161,-1,1,-24,207,-868,1925, %U A204001 -2232,1218,-232,1,1,-27,269,-1351,3783,-6017,5214 %N A204001 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i(j+1-1),j(i+1)-1} (A204000). %C A204001 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A204001 (For references regarding interlacing roots, see A202605.) %e A204001 Top of the array: %e A204001 1...-1 %e A204001 1...-6....1 %e A204001 1...-9....17...-1 %e A204001 1...-12...39...-36...1 %t A204001 f[i_, j_] := Min[i (j + 1) - 1, j (i + 1) - 1]; %t A204001 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204001 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204001 Flatten[Table[f[i, n + 1 - i], %t A204001 {n, 1, 12}, {i, 1, n}]] (* A204000 *) %t A204001 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204001 c[n_] := CoefficientList[p[n], x] %t A204001 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204001 Table[c[n], {n, 1, 12}] %t A204001 Flatten[%] (* A204001 *) %t A204001 TableForm[Table[c[n], {n, 1, 10}]] %Y A204001 Cf. A204000, A202605. %K A204001 tabl,sign %O A204001 1,4 %A A204001 _Clark Kimberling_, Jan 09 2012