This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204003 #7 Jul 12 2012 00:39:54 %S A204003 3,-1,2,-9,1,1,-9,18,-1,0,-5,25,-30,1,-1,3,14,-55,45,-1,-2,15,-27,-28, %T A204003 105,-63,1,-3,31,-110,135,42,-182,84,-1,-4,51,-247,550,-495,-42,294, %U A204003 -108,1,-5,75,-450,1365,-2145,1485,0,-450,135,-1,-6,103 %N A204003 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{2i+j,i+2j} (A204002). %C A204003 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A204003 (For references regarding interlacing roots, see A202605.) %e A204003 Top of the array: %e A204003 3...-1 %e A204003 2...-9.....1 %e A204003 1...-9....18...-1 %e A204003 0...-5....25...-30...1 %t A204003 f[i_, j_] := Min[2 i + j, 2 j + i]; %t A204003 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204003 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204003 Flatten[Table[f[i, n + 1 - i], %t A204003 {n, 1, 12}, {i, 1, n}]] (* A204002 *) %t A204003 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204003 c[n_] := CoefficientList[p[n], x] %t A204003 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204003 Table[c[n], {n, 1, 12}] %t A204003 Flatten[%] (* A204003 *) %t A204003 TableForm[Table[c[n], {n, 1, 10}]] %Y A204003 Cf. A204002, A202605. %K A204003 tabl,sign %O A204003 1,1 %A A204003 _Clark Kimberling_, Jan 09 2012