This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204004 #23 Jun 24 2017 00:58:52 %S A204004 1,3,3,5,4,5,7,6,6,7,9,8,7,8,9,11,10,9,9,10,11,13,12,11,10,11,12,13, %T A204004 15,14,13,12,12,13,14,15,17,16,15,14,13,14,15,16,17,19,18,17,16,15,15, %U A204004 16,17,18,19,21,20,19,18,17,16,17,18,19,20,21,23,22,21,20,19,18 %N A204004 Symmetric matrix based on f(i,j) = max{2i+j-2,i+2j-2}, by antidiagonals. %C A204004 A204004 represents the matrix M given by f(i,j)=max{2i+j,i+2j}for i>=1 and j>=1. See A204005 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %C A204004 General case A206772. Let m be natural number. Table T(n,k)=max{m*n+k-m,n+m*k-m} read by antidiagonals. %C A204004 For m=1 the result is A002024, %C A204004 for m=2 the result is A204004, %C A204004 for m=3 the result is A204008, %C A204004 for m=4 the result is A206772. - _Boris Putievskiy_, Jan 24 2013 %H A204004 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [Of] Integer Sequences And Pairing Functions</a>, arXiv preprint arXiv:1212.2732 [math.CO], 2012. %F A204004 From _Boris Putievskiy_, Jan 24 2013: (Start) %F A204004 For the general case, a(n) = m*A002024(n) + (m-1)*max{-A002260(n),-A004736(n)}. %F A204004 a(n) = m*(t+1) + (m-1)*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). %F A204004 For m=2, a(n) = 2*(t+1) + max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). (End) %e A204004 Northwest corner: %e A204004 1, 3, 5, 7, 9 %e A204004 3, 4, 6, 8, 10 %e A204004 5, 6, 7, 9, 11 %e A204004 7, 8, 9, 10, 12 %t A204004 f[i_, j_] := Max[2 i + j - 2, 2 j + i - 2]; %t A204004 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204004 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204004 Flatten[Table[f[i, n + 1 - i], %t A204004 {n, 1, 12}, {i, 1, n}]] (* A204004 *) %t A204004 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204004 c[n_] := CoefficientList[p[n], x] %t A204004 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204004 Table[c[n], {n, 1, 12}] %t A204004 Flatten[%] (* A204005 *) %t A204004 TableForm[Table[c[n], {n, 1, 10}]] %Y A204004 Cf. A204005, A202453, A002024, A204008, A002260, A004736, A206772. %K A204004 nonn,tabl %O A204004 1,2 %A A204004 _Clark Kimberling_, Jan 09 2012