This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204005 #7 Jul 12 2012 00:39:54 %S A204005 1,-1,-5,-5,1,9,31,12,-1,-13,-73,-105,-22,1,17,131,322,265,35,-1,-21, %T A204005 -205,-711,-1036,-560,-51,1,25,295,1320,2775,2730,1050,70,-1,-29,-401, %U A204005 -2197,-6050,-8745,-6258,-1806,-92,1,33,523,3390,11557 %N A204005 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{2i+j-2,2j+i-2} (A204004). %C A204005 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A204005 (For references regarding interlacing roots, see A202605.) %e A204005 Top of the array: %e A204005 1....-1 %e A204005 -5....-5....1 %e A204005 9.....31...12....-1 %e A204005 -13...-73..-105...-22...1 %t A204005 f[i_, j_] := Max[2 i + j - 2, 2 j + i - 2]; %t A204005 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204005 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204005 Flatten[Table[f[i, n + 1 - i], %t A204005 {n, 1, 12}, {i, 1, n}]] (* A204004 *) %t A204005 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204005 c[n_] := CoefficientList[p[n], x] %t A204005 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204005 Table[c[n], {n, 1, 12}] %t A204005 Flatten[%] (* A204005 *) %t A204005 TableForm[Table[c[n], {n, 1, 10}]] %Y A204005 Cf. A204004, A202605. %K A204005 tabl,sign %O A204005 1,3 %A A204005 _Clark Kimberling_, Jan 09 2012