This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204006 #13 Feb 06 2023 14:03:33 %S A204006 1,2,2,3,4,3,4,5,5,4,5,6,7,6,5,6,7,8,8,7,6,7,8,9,10,9,8,7,8,9,10,11, %T A204006 11,10,9,8,9,10,11,12,13,12,11,10,9,10,11,12,13,14,14,13,12,11,10,11, %U A204006 12,13,14,15,16,15,14,13,12,11,12,13,14,15,16,17,17,16,15,14,13,12 %N A204006 Symmetric matrix based on f(i,j) = min{2i+j-2,i+2j-2}, by antidiagonals. %C A204006 A204006 represents the matrix M given by f(i,j) = min{2i+j,i+2j} for i>=1 and j>=1. See A204007 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A204006 Northwest corner: %e A204006 1...2...3...4....5....6 %e A204006 2...4...5...6....7....8 %e A204006 3...5...7...8....9....10 %e A204006 4...6...8...10...11...12 %t A204006 f[i_, j_] := Min[2 i + j - 2, 2 j + i - 2]; %t A204006 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204006 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204006 Flatten[Table[f[i, n + 1 - i], %t A204006 {n, 1, 12}, {i, 1, n}]] (* A204006 *) %t A204006 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204006 c[n_] := CoefficientList[p[n], x] %t A204006 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204006 Table[c[n], {n, 1, 12}] %t A204006 Flatten[%] (* A204007 *) %t A204006 TableForm[Table[c[n], {n, 1, 10}]] %Y A204006 Cf. A204007, A202453. %K A204006 nonn,tabl %O A204006 1,2 %A A204006 _Clark Kimberling_, Jan 09 2012