This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204011 #7 Jul 12 2012 00:39:54 %S A204011 1,-1,-11,-6,1,40,70,15,-1,-116,-328,-240,-28,1,304,1176,1456,610,45, %T A204011 -1,-752,-3680,-6408,-4704,-1295,-66,1,1792,10592,23760,25080,12432, %U A204011 2436,91,-1,-4160,-28800,-79040 %N A204011 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{3i+j-3,i+3j-3} (A204008). %C A204011 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A204011 (For references regarding interlacing roots, see A202605.) %e A204011 Top of the array: %e A204011 1.....-1 %e A204011 -11....-6.....1 %e A204011 40.....70....15....-1 %e A204011 -116...-328..-240....1 %t A204011 f[i_, j_] := Max[3 i + j - 3, 3 j + i - 3]; %t A204011 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204011 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204011 Flatten[Table[f[i, n + 1 - i], %t A204011 {n, 1, 12}, {i, 1, n}]] (* A204008 *) %t A204011 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204011 c[n_] := CoefficientList[p[n], x] %t A204011 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204011 Table[c[n], {n, 1, 12}] %t A204011 Flatten[%] (* A204011 *) %t A204011 TableForm[Table[c[n], {n, 1, 10}]] %Y A204011 Cf. A204008, A202605. %K A204011 tabl,sign %O A204011 1,3 %A A204011 _Clark Kimberling_, Jan 09 2012