This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204012 #5 Mar 30 2012 18:58:07 %S A204012 1,2,2,3,5,3,4,6,6,4,5,7,9,7,5,6,8,10,10,8,6,7,9,11,13,11,9,7,8,10,12, %T A204012 14,14,12,10,8,9,11,13,15,17,15,13,11,9,10,12,14,16,18,18,16,14,12,10, %U A204012 11,13,15,17,19,21,19,17,15,13,11,12,14,16,18,20,22,22,20,18 %N A204012 Symmetric matrix based on f(i,j)=min{3i+j-3,i+3j-3}, by antidiagonals. %C A204012 A204012 represents the matrix M given by f(i,j)=max{3i+j-3,i+3j-3}for i>=1 and j>=1. See A204013 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A204012 Northwest corner: %e A204012 1....2....3....4....5....6 %e A204012 2....5....6....7....8....9 %e A204012 3....6....9....10...11...12 %e A204012 4....7....10...13...14...15 %t A204012 f[i_, j_] := Min[3 i + j - 3, 3 j + i - 3]; %t A204012 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204012 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204012 Flatten[Table[f[i, n + 1 - i], %t A204012 {n, 1, 12}, {i, 1, n}]] (* A204012 *) %t A204012 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204012 c[n_] := CoefficientList[p[n], x] %t A204012 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204012 Table[c[n], {n, 1, 12}] %t A204012 Flatten[%] (* A204013 *) %t A204012 TableForm[Table[c[n], {n, 1, 10}]] %Y A204012 Cf. A204013, A202453. %K A204012 nonn,tabl %O A204012 1,2 %A A204012 _Clark Kimberling_, Jan 10 2012