A204014 Symmetric matrix based by antidiagonals, based on f(i,j)=min{1+(j mod i), 1+( i mod j)}.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 1, 3, 2, 1, 1, 1, 2, 3, 4, 2, 2, 4, 3, 2, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 1, 1, 1, 3, 3, 5, 3, 1, 3, 5, 3, 3, 1, 1, 1, 2, 1, 4, 1, 4, 2, 2
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 2 3 1 1 1 2 1 2 3 1 2 3 2 1 2
Programs
-
Mathematica
f[i_, j_] := Min[1 + Mod[i, j], 1 + Mod[j, i]]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A204014 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204015 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments