This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204015 #6 Jul 12 2012 00:39:54 %S A204015 1,-1,0,-2,1,-1,3,3,-1,0,2,-6,-4,1,0,-8,8,20,5,-1,-16,14,58,-4,-31,-6, %T A204015 1,48,16,-169,-121,69,63,7,-1,208,-320,-576,540,432,-128,-97,-8,1,400, %U A204015 -2048,1876,2340,-1828,-928,309,153,9,-1,-4800,6880 %N A204015 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{1+(j mod i), 1+( i mod j)} (A204014). %C A204015 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A204015 (For references regarding interlacing roots, see A202605.) %e A204015 Top of the array: %e A204015 1...-1 %e A204015 0...-2...1 %e A204015 -1....3...3...-1 %e A204015 0....2..-6...-4....1 %e A204015 0...-8...8....20...5...1 %t A204015 f[i_, j_] := Min[1 + Mod[i, j], 1 + Mod[j, i]]; %t A204015 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204015 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204015 Flatten[Table[f[i, n + 1 - i], %t A204015 {n, 1, 12}, {i, 1, n}]] (* A204014 *) %t A204015 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204015 c[n_] := CoefficientList[p[n], x] %t A204015 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204015 Table[c[n], {n, 1, 12}] %t A204015 Flatten[%] (* A204015 *) %t A204015 TableForm[Table[c[n], {n, 1, 10}]] %Y A204015 Cf. A204014, A202605. %K A204015 tabl,sign %O A204015 1,4 %A A204015 _Clark Kimberling_, Jan 10 2012