A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.
0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1
Examples
Northwest corner: 0 1 1 1 1 1 1 1 0 1 2 2 2 2 2 2 1 2 0 3 3 3 3 3 1 2 3 0 4 4 4 4 1 2 3 4 0 5 5 5 1 2 3 4 5 0 6 6 1 2 3 4 5 6 0 7
Programs
-
Mathematica
f[i_, j_] := Max[Mod[i, j], Mod[j, i]]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A204016 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204017 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments