This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204017 #6 Jul 12 2012 00:39:54 %S A204017 0,-1,-1,0,1,4,6,0,-1,-15,-38,-20,0,1,56,206,184,50,0,-1,-185,-1072, %T A204017 -1357,-630,-105,0,1,204,5146,9276,6060,1736,196,0,-1,6209,-17334, %U A204017 -58470,-52452,-21102,-4116,-336,0,1,-112400,-67682,293984 %N A204017 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{j mod i, i mod j} (A204016). %C A204017 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A204016 and A202605 for guides to related sequences. %D A204017 (For references regarding interlacing roots, see A202605.) %e A204017 Top of the array: %e A204017 1... -1 %e A204017 -1.... 0.... 1 %e A204017 4.... 6.... 0... -1 %e A204017 -15.. -38.. -20... 0... 1 %e A204017 56... 206.. 184.. 50.. 0.. -1 %e A204017 ... %e A204017 The 1st principal submatrix (ps) of A204016 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}. %e A204017 ... %e A204017 The 2nd ps is {{0,1},{1,0}}, with p(2)=-1+x^2 and zero-set {-1,1}. %e A204017 ... %e A204017 The 3rd ps is {{0,1,1},{1,0,2},{1,2,0}}, with p(3)=4+6x-x^3 and zero-set {-2, -0.732...,2.732...}. %e A204017 ... %e A204017 The 4th ps is {{0,1,1,1},{1,0,2,2},{1,2,0,3},{1,2,0,3}}, with p(4)=-15-38x-20x^2+x^4 and zero-set {-3, -1.714, -0.553, 5.268}. %e A204017 ... %e A204017 The interlace property is illustrated for the last two zero-sets by this chain: %e A204017 -3 < -2 < -1.7 < -0.7 < -0.5 < 2.7 < 5.2 %t A204017 f[i_, j_] := Max[Mod[i, j], Mod[j, i]]; %t A204017 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204017 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204017 Flatten[Table[f[i, n + 1 - i], %t A204017 {n, 1, 12}, {i, 1, n}]] (* A204016 *) %t A204017 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204017 c[n_] := CoefficientList[p[n], x] %t A204017 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204017 Table[c[n], {n, 1, 12}] %t A204017 Flatten[%] (* A204017 *) %t A204017 TableForm[Table[c[n], {n, 1, 10}]] %Y A204017 Cf. A204016, A202605. %K A204017 tabl,sign %O A204017 1,6 %A A204017 _Clark Kimberling_, Jan 10 2012