This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204018 #7 Dec 25 2023 18:18:43 %S A204018 1,2,2,2,1,2,2,3,3,2,2,3,1,3,2,2,3,4,4,3,2,2,3,4,1,4,3,2,2,3,4,5,5,4, %T A204018 3,2,2,3,4,5,1,5,4,3,2,2,3,4,5,6,6,5,4,3,2,2,3,4,5,6,1,6,5,4,3,2,2,3, %U A204018 4,5,6,7,7,6,5,4,3,2,2,3,4,5,6,7,1,7,6,5,4,3,2,2,3,4,5,6,7,8,8 %N A204018 Symmetric matrix based on f(i,j)=1+max(j mod i, i mod j), by antidiagonals. %C A204018 A204018 represents the matrix M given by f(i,j)=max{1+(j mod i), 1+( i mod j)} for i>=1 and j>=1. See A204019 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204018 Northwest corner: %e A204018 1 2 2 2 2 2 %e A204018 2 1 3 3 3 3 %e A204018 2 3 1 4 4 4 %e A204018 2 3 4 1 5 5 %e A204018 2 3 4 5 1 6 %e A204018 2 3 4 5 6 1 %t A204018 f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]]; %t A204018 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204018 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204018 Flatten[Table[f[i, n + 1 - i], %t A204018 {n, 1, 15}, {i, 1, n}]] (* A204018 *) %t A204018 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204018 c[n_] := CoefficientList[p[n], x] %t A204018 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204018 Table[c[n], {n, 1, 12}] %t A204018 Flatten[%] (* A204019 *) %t A204018 TableForm[Table[c[n], {n, 1, 10}]] %Y A204018 Cf. A204019, A204016, A202453. %K A204018 nonn,tabl %O A204018 1,2 %A A204018 _Clark Kimberling_, Jan 11 2012