This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204019 #6 Jul 12 2012 00:39:54 %S A204019 1,-1,-3,-2,1,8,14,3,-1,-21,-64,-40,-4,1,40,266,280,90,5,-1,125,-930, %T A204019 -1671,-896,-175,-6,1,-2940,854,8600,7228,2352,308,7,-1,35035,37744, %U A204019 -27334,-50164,-24594,-5376,-504,-8,1,-372400 %N A204019 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{1+j mod i, 1+i mod j} (A204018). %C A204019 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). The least zero of p(n) is -n. %C A204019 For n>1, the least zero of p(n) is exactly 1-n; the greatest, for p(1) to p(5) is represented by (1,3,5.701...,9.158...13.392...). %C A204019 See A202605 and A204016 for guides to related sequences. %D A204019 (For references regarding interlacing roots, see A202605.) %e A204019 Top of the array: %e A204019 1....-1 %e A204019 -3....-2......1 %e A204019 8.....14.....3....-1 %e A204019 -21...-64....-40...-4...1 %t A204019 f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]]; %t A204019 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204019 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204019 Flatten[Table[f[i, n + 1 - i], %t A204019 {n, 1, 15}, {i, 1, n}]] (* A204018 *) %t A204019 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204019 c[n_] := CoefficientList[p[n], x] %t A204019 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204019 Table[c[n], {n, 1, 12}] %t A204019 Flatten[%] (* A204019 *) %t A204019 TableForm[Table[c[n], {n, 1, 10}]] %Y A204019 Cf. A204018, A202605, A204016. %K A204019 tabl,sign %O A204019 1,3 %A A204019 _Clark Kimberling_, Jan 11 2012