This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204022 #30 Jun 09 2025 00:53:07 %S A204022 1,3,3,5,3,5,7,5,5,7,9,7,5,7,9,11,9,7,7,9,11,13,11,9,7,9,11,13,15,13, %T A204022 11,9,9,11,13,15,17,15,13,11,9,11,13,15,17,19,17,15,13,11,11,13,15,17, %U A204022 19,21,19,17,15,13,11,13,15,17,19,21,23,21,19,17,15,13,13,15,17,19,21,23 %N A204022 Symmetric matrix based on f(i,j) = max(2i-1, 2j-1), by antidiagonals. %C A204022 This sequence represents the matrix M given by f(i,j) = max(2i-1, 2j-1) for i >= 1 and j >= 1. See A204023 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %H A204022 G. C. Greubel, <a href="/A204022/b204022.txt">Rows n = 1..100 of triangle, flattened</a> %F A204022 From _Ridouane Oudra_, May 27 2019: (Start) %F A204022 a(n) = t + |t^2-2n+1|, where t = floor(sqrt(2n-1)+1/2). %F A204022 a(n) = A209302(2n-1). %F A204022 a(n) = A002024(n) + |A002024(n)^2-2n+1|. %F A204022 a(n) = t + |t^2-2n+1|, where t = floor(sqrt(2n)+1/2). (End) %e A204022 Northwest corner: %e A204022 1 3 5 7 9 %e A204022 3 3 5 7 9 %e A204022 5 5 5 7 9 %e A204022 7 7 7 7 9 %e A204022 9 9 9 9 9 %t A204022 (* First program *) %t A204022 f[i_, j_] := Max[2 i - 1, 2 j - 1]; %t A204022 m[n_] := Table[f[i, j], {i, n}, {j, n}] %t A204022 TableForm[m[6]] (* 6 X 6 principal submatrix *) %t A204022 Flatten[Table[f[i, n + 1 - i], %t A204022 {n, 15}, {i, n}]] (* A204022 *) %t A204022 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204022 c[n_] := CoefficientList[p[n], x] %t A204022 TableForm[Flatten[Table[p[n], {n, 10}]]] %t A204022 Table[c[n], {n, 12}] %t A204022 Flatten[%] (* A204023 *) %t A204022 TableForm[Table[c[n], {n, 10}]] %t A204022 (* Second program *) %t A204022 Table[Max[2*k-1, 2*(n-k)+1], {n, 12}, {k, n}]//Flatten (* _G. C. Greubel_, Jul 23 2019 *) %o A204022 (PARI) {T(n, k) = max(2*k-1, 2*(n-k)+1)}; %o A204022 for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ _G. C. Greubel_, Jul 23 2019 %o A204022 (Magma) [[Max(2*k-1, 2*(n-k)+1): k in [1..n]]: n in [1..12]]; // _G. C. Greubel_, Jul 23 2019 %o A204022 (Sage) [[max(2*k-1, 2*(n-k)+1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jul 23 2019 %o A204022 (GAP) Flat(List([1..12], n-> List([1..n], k-> Maximum(2*k-1, 2*(n-k)+1) ))); # _G. C. Greubel_, Jul 23 2019 %o A204022 (Python) %o A204022 from math import isqrt %o A204022 def A204022(n): return (m:=isqrt(n<<3)+1>>1)+abs(m**2-(n<<1)+1) # _Chai Wah Wu_, Jun 08 2025 %Y A204022 Cf. A202453, A204016, A204022, A209302. %K A204022 nonn,tabl %O A204022 1,2 %A A204022 _Clark Kimberling_, Jan 11 2012