This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204023 #6 Jul 12 2012 00:39:58 %S A204023 1,-1,-6,-4,1,20,36,9,-1,-56,-160,-120,-16,1,144,560,700,300,25,-1, %T A204023 -352,-1728,-3024,-2240,-630,-36,1,832,4928,11088,11760,5880,1176,49, %U A204023 -1,-1920,-13312,-36608,-50688,-36960 %N A204023 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max(2i-1, 2j-1) (A204022). %C A204023 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204023 (For references regarding interlacing roots, see A202605.) %e A204023 Top of the array: %e A204023 1....-1 %e A204023 -6....-4.....1 %e A204023 20....36....9.....-1 %e A204023 -56...-160..-120...-16....1 %t A204023 f[i_, j_] := Max[2 i - 1, 2 j - 1]; %t A204023 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204023 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204023 Flatten[Table[f[i, n + 1 - i], %t A204023 {n, 1, 15}, {i, 1, n}]] (* A204022 *) %t A204023 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204023 c[n_] := CoefficientList[p[n], x] %t A204023 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204023 Table[c[n], {n, 1, 12}] %t A204023 Flatten[%] (* A204023 *) %t A204023 TableForm[Table[c[n], {n, 1, 10}]] %Y A204023 Cf. A204022, A202605, A204016. %K A204023 tabl,sign %O A204023 1,3 %A A204023 _Clark Kimberling_, Jan 11 2012