This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204024 #6 Jul 12 2012 00:39:58 %S A204024 1,-1,2,-4,1,6,-16,10,-1,24,-76,70,-20,1,120,-428,496,-224,35,-1,720, %T A204024 -2808,3808,-2260,588,-56,1,5040,-21096,32152,-23008,8140,-1344,84,-1, %U A204024 40320,-178848,298688,-245560,107328,-24772,2772 %N A204024 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min(i(i+1)/2, j(j+1)/2) (A106255). %C A204024 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204024 (For references regarding interlacing roots, see A202605.) %e A204024 Top of the array: %e A204024 1....-1 %e A204024 2....-4....1 %e A204024 6....-16...10...-1 %e A204024 24...-76...70...-20....1 %t A204024 f[i_, j_] := Min[i (i + 1)/2, j (j + 1)/2]; %t A204024 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204024 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204024 Flatten[Table[f[i, n + 1 - i], %t A204024 {n, 1, 15}, {i, 1, n}]] (* A106255 *) %t A204024 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204024 c[n_] := CoefficientList[p[n], x] %t A204024 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204024 Table[c[n], {n, 1, 12}] %t A204024 Flatten[%] (* A204024 *) %t A204024 TableForm[Table[c[n], {n, 1, 10}]] %Y A204024 Cf. A106255, A202605, A204016. %K A204024 tabl,sign %O A204024 1,3 %A A204024 _Clark Kimberling_, Jan 11 2012