This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204025 #9 Aug 02 2019 04:12:08 %S A204025 1,-1,1,-3,1,2,-8,6,-1,4,-20,26,-10,1,16,-88,134,-72,15,-1,32,-240, %T A204025 496,-408,143,-21,1,192,-1504,3352,-3112,1344,-284,28,-1,768,-6400, %U A204025 16320,-18496,10508,-3108,480,-36,1,4608,-39936,109952 %N A204025 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of gcd(i,j) (A003989). %C A204025 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204025 (For references regarding interlacing roots, see A202605.) %e A204025 Top of the array: %e A204025 1, -1; %e A204025 1, -3, 1; %e A204025 2, -8, 6, -1; %e A204025 4, -20, 26, -10, 1; %t A204025 f[i_, j_] := GCD[i, j] %t A204025 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204025 TableForm[m[6]] (* 6 X 6 principal submatrix *) %t A204025 Flatten[Table[f[i, n + 1 - i], %t A204025 {n, 1, 15}, {i, 1, n}]] (* A003989 *) %t A204025 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204025 c[n_] := CoefficientList[p[n], x] %t A204025 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204025 Table[c[n], {n, 1, 12}] %t A204025 Flatten[%] (* A204025 *) %t A204025 TableForm[Table[c[n], {n, 1, 10}]] %Y A204025 Cf. A003989, A202605, A204016. %K A204025 tabl,sign %O A204025 1,4 %A A204025 _Clark Kimberling_, Jan 11 2012