This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204026 #5 Mar 30 2012 18:58:07 %S A204026 1,1,1,1,2,1,1,2,2,1,1,2,3,2,1,1,2,3,3,2,1,1,2,3,5,3,2,1,1,2,3,5,5,3, %T A204026 2,1,1,2,3,5,8,5,3,2,1,1,2,3,5,8,8,5,3,2,1,1,2,3,5,8,13,8,5,3,2,1,1,2, %U A204026 3,5,8,13,13,8,5,3,2,1,1,2,3,5,8,13,21,13,8,5,3,2,1,1,2,3,5,8 %N A204026 Symmetric matrix based on f(i,j)=min(F(i+1),F(j+1)), where F=A000045 (Fibonacci numbers), by antidiagonals. %C A204026 A204026 represents the matrix M given by f(i,j)=min(F(i+1),F(j+1)) for i>=1 and j>=1. See A204027 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204026 Northwest corner: %e A204026 1 1 1 1 1 1 %e A204026 1 2 2 2 2 2 %e A204026 1 2 3 3 3 3 %e A204026 1 2 3 5 5 5 %e A204026 1 2 3 5 8 8 %e A204026 1 2 3 5 8 13 %t A204026 f[i_, j_] := Min[Fibonacci[i + 1], Fibonacci[j + 1]] %t A204026 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204026 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204026 Flatten[Table[f[i, n + 1 - i], %t A204026 {n, 1, 15}, {i, 1, n}]] (* A204026 *) %t A204026 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204026 c[n_] := CoefficientList[p[n], x] %t A204026 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204026 Table[c[n], {n, 1, 12}] %t A204026 Flatten[%] (* A204027 *) %t A204026 TableForm[Table[c[n], {n, 1, 10}]] %Y A204026 Cf. A204026, A204016, A202453. %K A204026 nonn,tabl %O A204026 1,5 %A A204026 _Clark Kimberling_, Jan 11 2012