This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204027 #6 Jul 12 2012 00:39:58 %S A204027 1,-1,1,-3,1,1,-5,6,-1,2,-12,21,-11,1,6,-40,86,-70,19,-1,30,-212,508, %T A204027 -510,214,-32,1,240,-1756,4482,-5056,2646,-614,53,-1,3120,-23308, %U A204027 61748,-74480,44002,-12764,1703,-87,1,65520,-495708,1343084 %N A204027 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of M (as in A204026), given by min(F(i+1),F(j+1)), where F=A000045 (Fibonacci numbers). %C A204027 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204027 (For references regarding interlacing roots, see A202605.) %e A204027 Top of the array: %e A204027 1....-1 %e A204027 1....-3....1 %e A204027 1....-5....6....-1 %e A204027 2....-12...21...-11....1 %t A204027 f[i_, j_] := Min[Fibonacci[i + 1], Fibonacci[j + 1]] %t A204027 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204027 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204027 Flatten[Table[f[i, n + 1 - i], %t A204027 {n, 1, 15}, {i, 1, n}]] (* A204026 *) %t A204027 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204027 c[n_] := CoefficientList[p[n], x] %t A204027 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204027 Table[c[n], {n, 1, 12}] %t A204027 Flatten[%] (* A204027 *) %t A204027 TableForm[Table[c[n], {n, 1, 10}]] %Y A204027 Cf. A204026, A202605, A204016. %K A204027 tabl,sign %O A204027 1,4 %A A204027 _Clark Kimberling_, Jan 11 2012