This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204028 #5 Mar 30 2012 18:58:07 %S A204028 1,1,1,1,4,1,1,4,4,1,1,4,7,4,1,1,4,7,7,4,1,1,4,7,10,7,4,1,1,4,7,10,10, %T A204028 7,4,1,1,4,7,10,13,10,7,4,1,1,4,7,10,13,13,10,7,4,1,1,4,7,10,13,16,13, %U A204028 10,7,4,1,1,4,7,10,13,16,16,13,10,7,4,1,1,4,7,10,13,16,19,16 %N A204028 Symmetric matrix based on f(i,j)=min(3i-2,3j-2), by antidiagonals. %C A204028 A204028 represents the matrix M given by f(i,j)=min(3i-2,3j-2) for i>=1 and j>=1. See A204029 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204028 Northwest corner: %e A204028 1...1...1...1....1....1 %e A204028 1...4...4...4....4....4 %e A204028 1...4...7...7....7....7 %e A204028 1...4...7...10...10...10 %e A204028 1...4...7...10...13...13 %t A204028 f[i_, j_] := Min[3 i - 2, 3 j - 2]; %t A204028 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204028 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204028 Flatten[Table[f[i, n + 1 - i], %t A204028 {n, 1, 15}, {i, 1, n}]] (* A204028 *) %t A204028 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204028 c[n_] := CoefficientList[p[n], x] %t A204028 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204028 Table[c[n], {n, 1, 12}] %t A204028 Flatten[%] (* A204029 *) %t A204028 TableForm[Table[c[n], {n, 1, 10}]] %Y A204028 Cf. A204029, A204016, A202453. %K A204028 nonn,tabl %O A204028 1,5 %A A204028 _Clark Kimberling_, Jan 11 2012