This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204029 #6 Jul 12 2012 00:39:58 %S A204029 1,-1,3,-5,1,9,-21,12,-1,27,-81,75,-22,1,81,-297,378,-195,35,-1,243, %T A204029 -1053,1701,-1260,420,-51,1,729,-3645,7128,-6885,3402,-798,70,-1,2187, %U A204029 -12393,28431,-33858,22275,-7938,1386,-92,1,6561 %N A204029 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=min(3i-2,3j-2) (A204028). %C A204029 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204029 (For references regarding interlacing roots, see A202605.) %e A204029 Top of the array: %e A204029 1....-1 %e A204029 3....-5....1 %e A204029 9....-21...12...-1 %e A204029 27...-81...75...-22....-11 %t A204029 f[i_, j_] := Min[3 i - 2, 3 j - 2]; %t A204029 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204029 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204029 Flatten[Table[f[i, n + 1 - i], %t A204029 {n, 1, 15}, {i, 1, n}]] (* A204028 *) %t A204029 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204029 c[n_] := CoefficientList[p[n], x] %t A204029 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204029 Table[c[n], {n, 1, 12}] %t A204029 Flatten[%] (* A204029 *) %t A204029 TableForm[Table[c[n], {n, 1, 10}]] %Y A204029 Cf. A204028, A202605, A204016. %K A204029 tabl,sign %O A204029 1,3 %A A204029 _Clark Kimberling_, Jan 11 2012