This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204030 #8 Aug 02 2019 04:12:12 %S A204030 2,1,1,2,3,2,1,1,1,1,2,1,4,1,2,1,3,1,1,3,1,2,1,2,5,2,1,2,1,1,1,1,1,1, %T A204030 1,1,2,3,4,1,6,1,4,3,2,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,7,2,1,2,1,2,1,3, %U A204030 1,5,3,1,1,3,5,1,3,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,1,1,1,1,1,1,1 %N A204030 Symmetric matrix based on f(i,j) = gcd(i+1, j+1), by antidiagonals. %C A204030 A204030 represents the matrix M given by f(i,j) = gcd(i+1, j+1) for i >= 1 and j >= 1. See A204031 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204030 Northwest corner: %e A204030 2 1 2 1 2 1 2 1 %e A204030 1 3 1 1 3 1 1 3 %e A204030 2 1 4 1 2 1 4 1 %e A204030 1 1 1 5 1 1 1 1 %e A204030 2 3 2 1 6 1 2 3 %e A204030 1 1 1 1 1 7 1 1 %t A204030 f[i_, j_] := GCD[i + 1, j + 1]; %t A204030 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204030 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204030 Flatten[Table[f[i, n + 1 - i], %t A204030 {n, 1, 15}, {i, 1, n}]] (* A204030 *) %t A204030 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204030 c[n_] := CoefficientList[p[n], x] %t A204030 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204030 Table[c[n], {n, 1, 12}] %t A204030 Flatten[%] (* A204111 *) %t A204030 TableForm[Table[c[n], {n, 1, 10}]] %Y A204030 Cf. A204111, A204016, A202453. %K A204030 nonn,tabl %O A204030 1,1 %A A204030 _Clark Kimberling_, Jan 11 2012