A204032 Number of (n+1) X 2 0..1 arrays with the sums of 2 X 2 subblocks nondecreasing rightwards and downwards.
16, 44, 121, 286, 676, 1482, 3249, 6840, 14400, 29640, 61009, 123994, 252004, 508526, 1026169, 2062468, 4145296, 8312988, 16670889, 33390774, 66879684, 133865682, 267944161, 536117488, 1072693504, 2145878288, 4292739361, 8586527026
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0....1..1....1..1....0..1....1..1....0..0....0..0....1..0....1..1....0..0 ..0..0....1..1....0..1....0..0....1..0....1..1....0..0....0..0....0..1....0..1 ..0..1....1..1....1..1....1..0....1..1....0..1....1..1....0..1....1..1....1..0 ..0..1....1..1....0..1....0..1....1..1....1..1....0..1....0..1....1..0....0..1 ..0..1....1..1....1..1....1..1....1..1....1..1....1..1....0..1....1..1....0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204039.
Formula
Empirical: a(n) = 4*a(n-1) -18*a(n-3) +17*a(n-4) +22*a(n-5) -36*a(n-6) +20*a(n-8) -8*a(n-9).
Empirical g.f.: x*(16 - 20*x - 55*x^2 + 90*x^3 + 52*x^4 - 144*x^5 + 20*x^6 + 72*x^7 - 32*x^8) / ((1 - x)^3*(1 + x)*(1 - 2*x)*(1 - 2*x^2)^2). - Colin Barker, Feb 20 2018
Comments