cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A204032 Number of (n+1) X 2 0..1 arrays with the sums of 2 X 2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

16, 44, 121, 286, 676, 1482, 3249, 6840, 14400, 29640, 61009, 123994, 252004, 508526, 1026169, 2062468, 4145296, 8312988, 16670889, 33390774, 66879684, 133865682, 267944161, 536117488, 1072693504, 2145878288, 4292739361, 8586527026
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2012

Keywords

Comments

Column 1 of A204039.

Examples

			Some solutions for n=4:
..1..0....1..1....1..1....0..1....1..1....0..0....0..0....1..0....1..1....0..0
..0..0....1..1....0..1....0..0....1..0....1..1....0..0....0..0....0..1....0..1
..0..1....1..1....1..1....1..0....1..1....0..1....1..1....0..1....1..1....1..0
..0..1....1..1....0..1....0..1....1..1....1..1....0..1....0..1....1..0....0..1
..0..1....1..1....1..1....1..1....1..1....1..1....1..1....0..1....1..1....0..1
		

Crossrefs

Cf. A204039.

Formula

Empirical: a(n) = 4*a(n-1) -18*a(n-3) +17*a(n-4) +22*a(n-5) -36*a(n-6) +20*a(n-8) -8*a(n-9).
Empirical g.f.: x*(16 - 20*x - 55*x^2 + 90*x^3 + 52*x^4 - 144*x^5 + 20*x^6 + 72*x^7 - 32*x^8) / ((1 - x)^3*(1 + x)*(1 - 2*x)*(1 - 2*x^2)^2). - Colin Barker, Feb 20 2018

A204031 Number of (n+1)X(n+1) 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

16, 164, 2928, 44366, 969528, 16895850, 397550036, 7576693894, 184631622106, 3777035543236, 93707916130348, 2028328695512904, 50826307266520194
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Diagonal of A204039

Examples

			Some solutions for n=4
..0..1..1..1..0....1..1..0..0..0....1..0..1..1..0....0..0..1..1..1
..1..0..0..0..1....0..0..1..1..1....0..1..0..1..1....0..1..0..1..1
..0..1..1..1..0....1..1..0..1..0....1..1..1..1..1....0..1..1..1..1
..0..1..0..1..1....0..1..1..1..1....1..1..1..1..1....0..1..1..1..1
..0..1..1..1..0....1..1..1..1..1....1..1..1..1..1....0..1..1..1..1
		

A204033 Number of (n+1)X3 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

44, 164, 603, 1758, 5130, 13040, 33223, 77574, 181559, 401370, 889157, 1896644, 4052667, 8444892, 17621165, 36165014, 74299430, 151007392, 307137335, 620376066, 1253727656, 2522563936, 5077320907, 10191401694, 20461362545
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Column 2 of A204039

Examples

			Some solutions for n=4
..1..1..0....1..1..0....1..1..1....1..0..1....0..0..1....1..0..0....1..1..1
..0..1..1....0..1..1....0..1..0....0..0..0....1..1..0....0..1..1....0..1..1
..1..1..1....1..1..1....1..1..1....0..1..1....0..1..1....1..1..0....1..1..1
..0..1..1....0..1..1....1..1..1....0..1..0....1..1..1....0..1..1....0..1..1
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +8*a(n-2) -50*a(n-3) -9*a(n-4) +270*a(n-5) -128*a(n-6) -820*a(n-7) +709*a(n-8) +1520*a(n-9) -1824*a(n-10) -1722*a(n-11) +2797*a(n-12) +1070*a(n-13) -2696*a(n-14) -160*a(n-15) +1608*a(n-16) -240*a(n-17) -544*a(n-18) +160*a(n-19) +80*a(n-20) -32*a(n-21)

A204034 Number of (n+1)X4 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

121, 603, 2928, 10505, 37642, 111578, 330509, 863435, 2254026, 5394662, 12906149, 29037224, 65337510, 140736855, 303340170, 634000207, 1326522462, 2717180447, 5573314419, 11270539628, 22825534613, 45808619416, 92067615036, 184020632660
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Column 3 of A204039

Examples

			Some solutions for n=4
..1..0..0..0....1..1..0..0....1..0..1..1....0..0..1..1....0..0..0..0
..0..0..1..0....0..0..1..1....0..1..1..0....1..1..0..0....0..1..0..1
..0..1..1..1....1..1..1..1....1..0..1..1....0..0..1..1....1..1..1..1
..0..1..1..1....0..0..1..1....0..1..1..1....1..1..0..0....1..0..1..0
..1..1..1..1....1..1..1..1....0..1..1..1....0..0..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +20*a(n-2) -98*a(n-3) -168*a(n-4) +1122*a(n-5) +674*a(n-6) -7970*a(n-7) -205*a(n-8) +39322*a(n-9) -13326*a(n-10) -142896*a(n-11) +86380*a(n-12) +395612*a(n-13) -325028*a(n-14) -850708*a(n-15) +867429*a(n-16) +1433880*a(n-17) -1752520*a(n-18) -1894178*a(n-19) +2759240*a(n-20) +1938970*a(n-21) -3430470*a(n-22) -1491450*a(n-23) +3380665*a(n-24) +795530*a(n-25) -2631230*a(n-26) -214060*a(n-27) +1599540*a(n-28) -65400*a(n-29) -744088*a(n-30) +104272*a(n-31) +255920*a(n-32) -56864*a(n-33) -61344*a(n-34) +17856*a(n-35) +9152*a(n-36) -3200*a(n-37) -640*a(n-38) +256*a(n-39)

A204035 Number of (n+1)X5 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

286, 1758, 10505, 44366, 189580, 642272, 2198077, 6415866, 18855400, 49463034, 130378965, 316145840, 769485458, 1759764220, 4037835608, 8842012560, 19423451542, 41206754874, 87691553223, 181894892784, 378439038413
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Column 4 of A204039

Examples

			Some solutions for n=4
..0..0..0..1..1....0..0..1..1..1....1..1..1..0..0....1..0..1..1..0
..0..0..0..1..0....0..1..0..1..1....0..0..0..1..1....0..1..0..1..1
..0..0..1..1..1....0..1..1..1..1....1..1..1..0..1....1..1..1..1..1
..0..0..0..1..1....0..1..1..1..1....1..0..1..1..1....1..1..1..1..1
..0..1..1..1..1....0..1..1..1..1....1..1..1..0..1....1..1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +26*a(n-2) -122*a(n-3) -302*a(n-4) +1766*a(n-5) +1978*a(n-6) -16138*a(n-7) -6930*a(n-8) +104454*a(n-9) +210*a(n-10) -509250*a(n-11) +151130*a(n-12) +1941310*a(n-13) -1020190*a(n-14) -5928050*a(n-15) +4236940*a(n-16) +14732870*a(n-17) -13009090*a(n-18) -30101870*a(n-19) +31422886*a(n-20) +50835986*a(n-21) -61498066*a(n-22) -71033438*a(n-23) +99090082*a(n-24) +81802994*a(n-25) -132597178*a(n-26) -76806422*a(n-27) +147941950*a(n-28) +57458666*a(n-29) -137661898*a(n-30) -32529638*a(n-31) +106500613*a(n-32) +11969534*a(n-33) -68049136*a(n-34) -652352*a(n-35) +35523824*a(n-36) -2735264*a(n-37) -14904960*a(n-38) +2248512*a(n-39) +4904928*a(n-40) -1052352*a(n-41) -1219328*a(n-42) +329216*a(n-43) +215296*a(n-44) -68608*a(n-45) -24064*a(n-46) +8704*a(n-47) +1280*a(n-48) -512*a(n-49)

A204036 Number of (n+1)X6 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

676, 5130, 37642, 189580, 969528, 3811097, 15164049, 50226272, 167435933, 488825091, 1431119793, 3794040002, 10068045085, 24759248822, 60904889948, 141191889755, 327408688415, 724682233233, 1605043691566, 3427407495669
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Column 5 of A204039

Examples

			Some solutions for n=4
..1..0..1..0..0..1....1..0..1..1..1..1....0..1..0..1..0..0....1..1..1..1..1..0
..0..1..0..1..1..1....0..1..0..1..0..1....0..0..1..0..1..1....1..0..1..0..1..1
..0..1..1..1..1..1....0..1..1..1..1..1....1..0..1..0..1..0....1..1..1..1..1..1
..0..1..1..1..1..1....0..1..0..1..0..1....1..1..1..1..1..1....0..1..0..1..1..1
..1..1..1..1..1..1....1..1..1..1..1..1....1..0..1..1..1..1....1..1..1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +36*a(n-2) -162*a(n-3) -604*a(n-4) +3154*a(n-5) +6186*a(n-6) -39306*a(n-7) -42019*a(n-8) +352234*a(n-9) +185034*a(n-10) -2417268*a(n-11) -373572*a(n-12) +13210560*a(n-13) -1570272*a(n-14) -59024568*a(n-15) +19656918*a(n-16) +219635712*a(n-17) -111911552*a(n-18) -689846188*a(n-19) +456557112*a(n-20) +1846825596*a(n-21) -1475810036*a(n-22) -4244002060*a(n-23) +3939977274*a(n-24) +8411721276*a(n-25) -8879451716*a(n-26) -14420754064*a(n-27) +17114577864*a(n-28) +21404362296*a(n-29) -28443491112*a(n-30) -27477002760*a(n-31) +40968113595*a(n-32) +30399541644*a(n-33) -51286804500*a(n-34) -28786717410*a(n-35) +55865954980*a(n-36) +23043376130*a(n-37) -52927725990*a(n-38) -15237886650*a(n-39) +43528988089*a(n-40) +7928932874*a(n-41) -30968624214*a(n-42) -2828143692*a(n-43) +18960199036*a(n-44) +237170744*a(n-45) -9916598664*a(n-46) +560142864*a(n-47) +4386822816*a(n-48) -514808256*a(n-49) -1619296704*a(n-50) +277582464*a(n-51) +489565056*a(n-52) -107579136*a(n-53) -118077184*a(n-54) +31074304*a(n-55) +21847296*a(n-56) -6606336*a(n-57) -2911744*a(n-58) +984064*a(n-59) +248832*a(n-60) -92160*a(n-61) -10240*a(n-62) +4096*a(n-63)

A204037 Number of (n+1)X7 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

1482, 13040, 111578, 642272, 3811097, 16895850, 76619720, 282617310, 1055589853, 3391174364, 10959843386, 31616413858, 91424070381, 242081380402, 641447591664, 1585247839144, 3918142616865, 9157651318884, 21407414058747
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Column 6 of A204039

Examples

			Some solutions for n=4
..0..0..0..1..0..1..1....0..0..0..1..0..1..1....1..0..0..1..1..0..0
..0..1..0..0..0..1..0....1..0..1..0..1..1..1....0..1..1..0..0..1..1
..0..0..0..1..0..1..1....0..0..1..0..1..1..1....1..0..0..1..1..0..1
..0..1..1..0..1..0..1....0..1..0..1..1..1..1....0..1..1..0..0..1..1
..1..0..0..1..1..1..1....0..1..0..1..1..1..1....1..0..0..1..1..0..1
		

Formula

Empirical: a(n) = 4*a(n-1) +42*a(n-2) -186*a(n-3) -834*a(n-4) +4182*a(n-5) +10330*a(n-6) -60562*a(n-7) -88176*a(n-8) +634854*a(n-9) +533742*a(n-10) -5132886*a(n-11) -2176526*a(n-12) +33303050*a(n-13) +3990822*a(n-14) -178125486*a(n-15) +20497455*a(n-16) +800655966*a(n-17) -244110372*a(n-18) -3067833252*a(n-19) +1424615412*a(n-20) +10128925356*a(n-21) -6109810428*a(n-22) -29054615892*a(n-23) +21157274696*a(n-24) +72863601532*a(n-25) -61532087460*a(n-26) -160504207212*a(n-27) +153496767684*a(n-28) +311598140244*a(n-29) -332678323252*a(n-30) -534270943580*a(n-31) +631715793357*a(n-32) +809848190976*a(n-33) -1056932627454*a(n-34) -1084942031778*a(n-35) +1564026334310*a(n-36) +1282470076558*a(n-37) -2051849112126*a(n-38) -1333006602906*a(n-39) +2389407590328*a(n-40) +1211100877470*a(n-41) -2470503463978*a(n-42) -952305712094*a(n-43) +2266388597226*a(n-44) +636981099522*a(n-45) -1841783785170*a(n-46) -350547551382*a(n-47) +1322443533509*a(n-48) +146531193214*a(n-49) -835911393576*a(n-50) -33897458784*a(n-51) +462865483080*a(n-52) -10151851248*a(n-53) -223084572480*a(n-54) +17366580000*a(n-55) +92807571120*a(n-56) -11894039520*a(n-57) -32967432960*a(n-58) +5724787200*a(n-59) +9857495296*a(n-60) -2119051264*a(n-61) -2433649152*a(n-62) +614862336*a(n-63) +482913024*a(n-64) -138665472*a(n-65) -74024960*a(n-66) +23601152*a(n-67) +8226816*a(n-68) -2863104*a(n-69) -589824*a(n-70) +221184*a(n-71) +20480*a(n-72) -8192*a(n-73)

A204038 Number of (n+1)X8 0..1 arrays with the sums of 2X2 subblocks nondecreasing rightwards and downwards.

Original entry on oeis.org

3249, 33223, 330509, 2198077, 15164049, 76619720, 397550036, 1650280817, 6940548943, 24803795897, 89015368856, 282588248006, 896447738887, 2585717912290, 7434968846247, 19820964099968, 52629753599694
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Column 7 of A204039

Examples

			Some solutions for n=4
..0..1..1..1..1..1..1..1....0..1..0..1..0..1..0..0....0..1..1..0..0..1..1..0
..1..0..0..0..1..0..1..0....0..0..0..0..0..0..0..1....0..0..0..1..1..0..1..1
..0..1..1..1..1..1..1..1....0..1..1..1..1..1..1..0....1..1..1..0..1..1..1..1
..0..1..0..1..1..1..1..1....1..0..0..0..0..0..1..1....0..0..0..1..1..1..1..1
..1..1..1..1..1..1..1..1....0..1..1..1..1..1..1..1....1..1..1..0..1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +52*a(n-2) -226*a(n-3) -1296*a(n-4) +6210*a(n-5) +20530*a(n-6) -110578*a(n-7) -230665*a(n-8) +1434490*a(n-9) +1934946*a(n-10) -14450904*a(n-11) -12320932*a(n-12) +117668356*a(n-13) +58057636*a(n-14) -795930460*a(n-15) -174529485*a(n-16) +4561654968*a(n-17) +5783960*a(n-18) -22482351710*a(n-19) +4004317408*a(n-20) +96382920998*a(n-21) -31815344106*a(n-22) -362661863382*a(n-23) +167660892763*a(n-24) +1206296434070*a(n-25) -699867921970*a(n-26) -3567332267996*a(n-27) +2453509588140*a(n-28) +9422358831360*a(n-29) -7427473197472*a(n-30) -22308920543192*a(n-31) +19729568725309*a(n-32) +47481274209668*a(n-33) -46458179718732*a(n-34) -91032789624030*a(n-35) +97659689484240*a(n-36) +157441549620654*a(n-37) -184176843019650*a(n-38) -245819754993150*a(n-39) +312733177780725*a(n-40) +346519749882150*a(n-41) -479333910398850*a(n-42) -440729463376800*a(n-43) +664327503414900*a(n-44) +505005124022100*a(n-45) -833427927434700*a(n-46) -519968917201500*a(n-47) +946891743329025*a(n-48) +479133467560800*a(n-49) -974196663714144*a(n-50) -392664169605474*a(n-51) +907080060441888*a(n-52) +283393933688106*a(n-53) -763493755491974*a(n-54) -177154767356410*a(n-55) +579953785268345*a(n-56) +92946206692618*a(n-57) -396657087078510*a(n-58) -38010255685740*a(n-59) +243547963987844*a(n-60) +9173596634344*a(n-61) -133745006323448*a(n-62) +2016114146384*a(n-63) +65383883242704*a(n-64) -4126091055840*a(n-65) -28291252127840*a(n-66) +3027697305152*a(n-67) +10757165906240*a(n-68) -1584645895040*a(n-69) -3561984436608*a(n-70) +656835409152*a(n-71) +1015455091456*a(n-72) -222028538368*a(n-73) -245561625088*a(n-74) +61479009280*a(n-75) +49386654720*a(n-76) -13818415104*a(n-77) -8037591040*a(n-78) +2469130240*a(n-79) +1016983552*a(n-80) -338403328*a(n-81) -93855744*a(n-82) +33472512*a(n-83) +5619712*a(n-84) -2129920*a(n-85) -163840*a(n-86) +65536*a(n-87)
Showing 1-8 of 8 results.