cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204040 Triangle T(n,k), read by rows, given by (0, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, -4, 4, 6, 1, 0, -4, -8, 12, 8, 1, 0, 4, -24, -4, 24, 10, 1, 0, 12, -8, -60, 16, 40, 12, 1, 0, 4, 56, -84, -96, 60, 60, 14, 1, 0, -20, 88, 84, -272, -100, 136, 84, 16, 1, 0, -28, -40
Offset: 0

Views

Author

Philippe Deléham, Jan 27 2012

Keywords

Comments

Antidiagonal sums : periodic sequence 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, ... (see A007877 or A098178).Riordan array (1, x*(1+x)/(1-x+2*x^2)) .

Examples

			Triangle begins :
1
0, 1
0, 2, 1
0, 0, 4, 1
0, -4, 4, 6, 1
0, -4, -8, 12, 8, 1
0, 4, -24, -4, 24, 10, 1
0, 12, -8, -60, 16, 40, 12, 1
0, 4, 56, -84, -96, 60, 60, 14, 1
0, -20, 88, 84, -272, -100, 136, 84, 16, 1
		

Crossrefs

Cf. A005408.

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2, k-1) - 2*T(n-2,k).
G.f.: (1-x+2*x^2)/(1-(1+y)*x + (2-y)*x^2).
T(n,n) = n = A000012(n), T(n+1,n) = 2n = A005843(n), T(n+2,n) = A046092(n-1) for n>0, T(n+1,1) = A078050(n)*(-1)^n.
Sum_{k, 0<=k<=n} T(n,k) = A060747(n) = A005408(n-1).