cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204065 Least nonnegative integer k with n+k and n+k^2 both prime.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 16, 1, 0, 7, 4, 15, 2, 1, 0, 1, 0, 9, 8, 3, 6, 1, 0, 3, 2, 1, 0, 1, 0, 3, 8, 1, 0, 5, 10, 3, 10, 1, 0, 5, 4, 15, 2, 1, 0, 1, 0, 21, 4, 3, 6, 1, 0, 15, 2, 1, 0, 1, 0, 33, 8, 25, 6, 1, 0, 3, 16, 1, 0, 5, 4, 15, 14, 1, 0, 7, 6, 9, 4, 3, 6, 1, 0, 3, 2, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 09 2013

Keywords

Comments

Conjecture: For any n > 0 not among 1, 21, 326, 341, 626, we have a(n) < sqrt(n)*log(n). If n > 626 is not equal to 971, then n+k and n+k^2 are both prime for some 0< k < sqrt(n)*log(n). Also, n+k^2 is prime for some 0< k <= sqrt(n) if n > 43181.
Obviously, a(n)=0 iff n is a prime. - M. F. Hasler, Jan 11 2013

Examples

			a(8)=3 since 8+3 and 8+3^2 are both prime, but none of 8, 8+1, 8+2 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[PrimeQ[n+k]==True&&PrimeQ[n+k^2]==True,Print[n," ",k];Goto[aa]],{k,0,n}];
    Label[aa];Continue,{n,1,100}]
  • PARI
    a(n)=my(k=0); while(!isprime(n+k) || !isprime(n+k^2), k++); k \\ - M. F. Hasler, Jan 11 2013