cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204070 Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

38, 329, 2882, 25277, 221726, 1944977, 17061338, 149662085, 1312836086, 11516200601, 101020133234, 886148797901, 7773298914638, 68187392635937, 598139935894154, 5246884637775509, 46025681868191270, 403737367538170409
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2012

Keywords

Comments

Column 2 of A204076.

Examples

			Some solutions for n=4:
..0..1..0....0..0..0....0..0..0....0..1..2....0..0..0....0..0..1....0..0..1
..0..0..1....0..1..0....0..1..0....1..1..1....1..0..1....1..0..0....2..0..0
..1..0..0....2..0..1....0..0..2....1..1..1....2..1..2....1..1..0....1..2..0
..1..1..0....2..2..0....1..0..0....0..1..2....0..2..2....2..1..1....1..1..2
..2..1..1....0..2..2....2..1..0....2..0..1....2..0..2....0..2..1....2..1..1
		

Crossrefs

Cf. A204076.

Formula

Empirical: a(n) = 10*a(n-1) - 11*a(n-2) + 2*a(n-3).
Conjectures from Colin Barker, Jun 06 2018: (Start)
G.f.: x*(38 - 51*x + 10*x^2) / ((1 - x)*(1 - 9*x + 2*x^2)).
a(n) = 1/2 + (2^(-2-n)*(3*(9+sqrt(73))^n*(23+3*sqrt(73)) + (9-sqrt(73))^n*(-69+9*sqrt(73)))) / sqrt(73).
(End)