A204070 Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.
38, 329, 2882, 25277, 221726, 1944977, 17061338, 149662085, 1312836086, 11516200601, 101020133234, 886148797901, 7773298914638, 68187392635937, 598139935894154, 5246884637775509, 46025681868191270, 403737367538170409
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0....0..0..0....0..0..0....0..1..2....0..0..0....0..0..1....0..0..1 ..0..0..1....0..1..0....0..1..0....1..1..1....1..0..1....1..0..0....2..0..0 ..1..0..0....2..0..1....0..0..2....1..1..1....2..1..2....1..1..0....1..2..0 ..1..1..0....2..2..0....1..0..0....0..1..2....0..2..2....2..1..1....1..1..2 ..2..1..1....0..2..2....2..1..0....2..0..1....2..0..2....0..2..1....2..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204076.
Formula
Empirical: a(n) = 10*a(n-1) - 11*a(n-2) + 2*a(n-3).
Conjectures from Colin Barker, Jun 06 2018: (Start)
G.f.: x*(38 - 51*x + 10*x^2) / ((1 - x)*(1 - 9*x + 2*x^2)).
a(n) = 1/2 + (2^(-2-n)*(3*(9+sqrt(73))^n*(23+3*sqrt(73)) + (9-sqrt(73))^n*(-69+9*sqrt(73)))) / sqrt(73).
(End)
Comments