A204071 Number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.
188, 2882, 45056, 706454, 11081828, 173848010, 2727300008, 42785526110, 671213931980, 10529919897938, 165192062569424, 2591512360153766, 40655320900906676, 637795575671145050, 10005657004627715960
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..2....0..0..0..0....0..0..0..1....0..0..1..2....0..0..0..1 ..2..0..0..0....0..1..0..1....2..0..1..1....0..2..0..1....2..0..1..0 ..2..2..0..1....1..2..1..2....2..2..0..1....2..1..2..0....0..2..0..1 ..2..1..2..0....1..1..2..2....1..2..2..0....2..2..1..2....2..0..0..0 ..1..2..2..2....1..2..1..2....1..1..2..2....0..2..2..2....2..2..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204076.
Formula
Empirical: a(n) = 20*a(n-1) - 73*a(n-2) + 86*a(n-3) - 32*a(n-4).
Empirical g.f.: 2*x*(94 - 439*x + 570*x^2 - 224*x^3) / ((1 - x)*(1 - 19*x + 54*x^2 - 32*x^3)). - Colin Barker, Jun 06 2018
Comments