A204074 Number of (n+1)X7 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.
23438, 1944977, 173848010, 15960507749, 1480470688070, 137884925726873, 12862680257580962, 1200667125506097389, 112104534764514944606, 10468081339649563612769, 977525613860679565008506
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..2..0..2..2..0....0..0..0..1..2..0..1....0..0..0..1..2..1..2 ..1..1..1..2..1..2..2....2..0..2..0..1..2..0....0..0..1..0..1..0..1 ..1..0..1..1..1..1..2....0..1..0..1..2..1..2....2..0..0..0..0..2..0 ..0..2..0..1..2..1..1....1..0..2..0..1..1..1....1..2..0..0..1..0..2 ..0..0..2..0..1..2..1....1..1..0..1..1..1..0....2..1..2..0..0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 118*a(n-1) -731*a(n-2) -192994*a(n-3) +4365504*a(n-4) +7243432*a(n-5) -853595552*a(n-6) +4227025728*a(n-7) +47143688896*a(n-8) -407296962944*a(n-9) -429798333440*a(n-10) +11467618407936*a(n-11) -17466577684480*a(n-12) -111724579282944*a(n-13) +316040356208640*a(n-14) +361767531462656*a(n-15) -1868808138063872*a(n-16) +221838313259008*a(n-17) +4652179449380864*a(n-18) -2844522127687680*a(n-19) -5181635339747328*a(n-20) +4553597538271232*a(n-21) +2457666202894336*a(n-22) -2755619987652608*a(n-23) -413275992883200*a(n-24) +684703879266304*a(n-25) -18283340234752*a(n-26) -55383771054080*a(n-27) +8506451165184*a(n-28) -260919263232*a(n-29)
Comments