cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204075 Number of (n+1)X8 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

117188, 17061338, 2727300008, 451830740558, 75985220860460, 12862680257580962, 2183735443548857744, 371222822455471852118, 63142652467677473999828, 10742975214630659845650794
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Column 7 of A204076

Examples

			Some solutions for n=4
..0..1..2..2..0..0..0..2....0..0..0..0..1..0..1..2....0..0..0..1..2..1..0..2
..0..0..1..2..2..0..0..0....0..2..0..0..0..2..0..1....1..0..2..0..1..0..2..2
..2..0..0..1..2..2..0..0....0..0..0..2..0..0..0..0....2..1..0..0..0..2..1..2
..0..2..0..0..1..2..2..0....2..0..0..0..2..0..1..0....1..2..1..0..1..0..2..2
..2..0..1..0..0..1..2..2....0..2..0..2..0..1..2..1....1..1..1..1..1..1..0..2
		

Formula

Empirical: a(n) = 322*a(n-1) -31121*a(n-2) +677212*a(n-3) +56848972*a(n-4) -3586172600*a(n-5) +52369132896*a(n-6) +1245052315520*a(n-7) -47462252573696*a(n-8) +199722871680128*a(n-9) +11579233807503360*a(n-10) -161516422622031360*a(n-11) -781406452093941760*a(n-12) +30335388582357307392*a(n-13) -102551789828754223104*a(n-14) -2499075111791254233088*a(n-15) +21696171687994926645248*a(n-16) +73586462799086990983168*a(n-17) -1576005803911676145565696*a(n-18) +2408162877989904740777984*a(n-19) +55957566883111396665982976*a(n-20) -256470213770771143456718848*a(n-21) -882362368937819549787488256*a(n-22) +8451205698868439960808062976*a(n-23) -1734606525176780328074739712*a(n-24) -141028371040952846016774668288*a(n-25) +296324312967130989774499741696*a(n-26) +1198147430715508523506484641792*a(n-27) -4952845533984364757335295393792*a(n-28) -3186976950450110274831453782016*a(n-29) +40412468029396457697759830474752*a(n-30) -29248858868831293913779436257280*a(n-31) -177275840840616248911112251113472*a(n-32) +306730456012993930951282986582016*a(n-33) +365916593440879671670038106996736*a(n-34) -1252123486332919207419386477412352*a(n-35) +31455433167667604131574020308992*a(n-36) +2662103745182650392788796604153856*a(n-37) -1794384392309031579471189299429376*a(n-38) -2855274805218892553424514123300864*a(n-39) +3752560584513799228760234569760768*a(n-40) +955018952518786152205067397103616*a(n-41) -3479885196004780525644200160526336*a(n-42) +837529518152722930934794025959424*a(n-43) +1493157166737156760665543722139648*a(n-44) -855754296042631804236915409944576*a(n-45) -216580283784251054761779996393472*a(n-46) +271742943487852984902753988902912*a(n-47) -26382857255823684476961231470592*a(n-48) -32280501885628797705911908958208*a(n-49) +9223849840386162307148405538816*a(n-50) +583023965817031645837817544704*a(n-51) -526674746442027343134804934656*a(n-52) +65171585638020020911233564672*a(n-53) -1944707570813495706151550976*a(n-54) -24175560301554771538477056*a(n-55)