cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A204070 Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

38, 329, 2882, 25277, 221726, 1944977, 17061338, 149662085, 1312836086, 11516200601, 101020133234, 886148797901, 7773298914638, 68187392635937, 598139935894154, 5246884637775509, 46025681868191270, 403737367538170409
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2012

Keywords

Comments

Column 2 of A204076.

Examples

			Some solutions for n=4:
..0..1..0....0..0..0....0..0..0....0..1..2....0..0..0....0..0..1....0..0..1
..0..0..1....0..1..0....0..1..0....1..1..1....1..0..1....1..0..0....2..0..0
..1..0..0....2..0..1....0..0..2....1..1..1....2..1..2....1..1..0....1..2..0
..1..1..0....2..2..0....1..0..0....0..1..2....0..2..2....2..1..1....1..1..2
..2..1..1....0..2..2....2..1..0....2..0..1....2..0..2....0..2..1....2..1..1
		

Crossrefs

Cf. A204076.

Formula

Empirical: a(n) = 10*a(n-1) - 11*a(n-2) + 2*a(n-3).
Conjectures from Colin Barker, Jun 06 2018: (Start)
G.f.: x*(38 - 51*x + 10*x^2) / ((1 - x)*(1 - 9*x + 2*x^2)).
a(n) = 1/2 + (2^(-2-n)*(3*(9+sqrt(73))^n*(23+3*sqrt(73)) + (9-sqrt(73))^n*(-69+9*sqrt(73)))) / sqrt(73).
(End)

A204071 Number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

188, 2882, 45056, 706454, 11081828, 173848010, 2727300008, 42785526110, 671213931980, 10529919897938, 165192062569424, 2591512360153766, 40655320900906676, 637795575671145050, 10005657004627715960
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2012

Keywords

Comments

Column 3 of A204076.

Examples

			Some solutions for n=4:
..0..1..0..2....0..0..0..0....0..0..0..1....0..0..1..2....0..0..0..1
..2..0..0..0....0..1..0..1....2..0..1..1....0..2..0..1....2..0..1..0
..2..2..0..1....1..2..1..2....2..2..0..1....2..1..2..0....0..2..0..1
..2..1..2..0....1..1..2..2....1..2..2..0....2..2..1..2....2..0..0..0
..1..2..2..2....1..2..1..2....1..1..2..2....0..2..2..2....2..2..0..1
		

Crossrefs

Cf. A204076.

Formula

Empirical: a(n) = 20*a(n-1) - 73*a(n-2) + 86*a(n-3) - 32*a(n-4).
Empirical g.f.: 2*x*(94 - 439*x + 570*x^2 - 224*x^3) / ((1 - x)*(1 - 19*x + 54*x^2 - 32*x^3)). - Colin Barker, Jun 06 2018

A204072 Number of (n+1)X5 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

938, 25277, 706454, 19934369, 563880962, 15960507749, 451830740558, 12791537916233, 362138172985082, 10252434870775373, 290255213590923014, 8217375177569472881, 232640981675680448882, 6586267002045127095221
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Column 4 of A204076

Examples

			Some solutions for n=4
..0..0..0..1..1....0..0..0..1..2....0..1..0..2..1....0..1..1..1..2
..0..2..0..0..1....2..0..0..0..1....2..0..1..0..2....1..2..1..2..0
..0..0..2..0..0....1..2..0..2..0....1..2..0..0..0....1..1..2..2..2
..1..0..0..0..1....2..2..2..0..2....0..1..2..0..0....1..2..2..1..2
..0..0..0..2..0....1..2..1..2..0....0..0..1..2..0....0..1..2..2..1
		

Formula

Empirical: a(n) = 32*a(n-1) -55*a(n-2) -1588*a(n-3) +5428*a(n-4) -2664*a(n-5) -3936*a(n-6) +3040*a(n-7) -256*a(n-8)

A204073 Number of (n+1)X6 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

4688, 221726, 11081828, 563880962, 28864215128, 1480470688070, 75985220860460, 3900809853901802, 200268432775804640, 10282077911857180910, 527901424170345081716, 27103536327800063656274, 1391552121866875493481704
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Column 5 of A204076

Examples

			Some solutions for n=4
..0..0..0..1..2..1....0..0..1..1..0..1....0..1..1..2..0..1....0..0..1..0..0..0
..2..0..0..0..1..2....1..0..0..1..1..0....2..0..1..1..2..0....2..0..0..2..0..0
..2..2..0..1..0..1....0..1..0..0..1..1....2..2..0..1..1..2....2..2..0..0..2..0
..1..2..2..0..1..2....1..0..2..0..0..1....2..1..2..0..1..1....1..2..2..0..0..0
..2..2..1..2..0..1....2..1..0..1..0..0....0..2..2..2..0..1....1..1..2..2..0..2
		

Formula

Empirical: a(n) = 78*a(n-1) -1521*a(n-2) +7304*a(n-3) +32884*a(n-4) -338760*a(n-5) +639312*a(n-6) +947424*a(n-7) -3942080*a(n-8) +2598528*a(n-9) +1739776*a(n-10) -1832448*a(n-11) -14336*a(n-12) +163840*a(n-13)

A204074 Number of (n+1)X7 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

23438, 1944977, 173848010, 15960507749, 1480470688070, 137884925726873, 12862680257580962, 1200667125506097389, 112104534764514944606, 10468081339649563612769, 977525613860679565008506
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Column 6 of A204076

Examples

			Some solutions for n=4
..0..1..2..0..2..2..0....0..0..0..1..2..0..1....0..0..0..1..2..1..2
..1..1..1..2..1..2..2....2..0..2..0..1..2..0....0..0..1..0..1..0..1
..1..0..1..1..1..1..2....0..1..0..1..2..1..2....2..0..0..0..0..2..0
..0..2..0..1..2..1..1....1..0..2..0..1..1..1....1..2..0..0..1..0..2
..0..0..2..0..1..2..1....1..1..0..1..1..1..0....2..1..2..0..0..2..2
		

Formula

Empirical: a(n) = 118*a(n-1) -731*a(n-2) -192994*a(n-3) +4365504*a(n-4) +7243432*a(n-5) -853595552*a(n-6) +4227025728*a(n-7) +47143688896*a(n-8) -407296962944*a(n-9) -429798333440*a(n-10) +11467618407936*a(n-11) -17466577684480*a(n-12) -111724579282944*a(n-13) +316040356208640*a(n-14) +361767531462656*a(n-15) -1868808138063872*a(n-16) +221838313259008*a(n-17) +4652179449380864*a(n-18) -2844522127687680*a(n-19) -5181635339747328*a(n-20) +4553597538271232*a(n-21) +2457666202894336*a(n-22) -2755619987652608*a(n-23) -413275992883200*a(n-24) +684703879266304*a(n-25) -18283340234752*a(n-26) -55383771054080*a(n-27) +8506451165184*a(n-28) -260919263232*a(n-29)

A204075 Number of (n+1)X8 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

117188, 17061338, 2727300008, 451830740558, 75985220860460, 12862680257580962, 2183735443548857744, 371222822455471852118, 63142652467677473999828, 10742975214630659845650794
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Column 7 of A204076

Examples

			Some solutions for n=4
..0..1..2..2..0..0..0..2....0..0..0..0..1..0..1..2....0..0..0..1..2..1..0..2
..0..0..1..2..2..0..0..0....0..2..0..0..0..2..0..1....1..0..2..0..1..0..2..2
..2..0..0..1..2..2..0..0....0..0..0..2..0..0..0..0....2..1..0..0..0..2..1..2
..0..2..0..0..1..2..2..0....2..0..0..0..2..0..1..0....1..2..1..0..1..0..2..2
..2..0..1..0..0..1..2..2....0..2..0..2..0..1..2..1....1..1..1..1..1..1..0..2
		

Formula

Empirical: a(n) = 322*a(n-1) -31121*a(n-2) +677212*a(n-3) +56848972*a(n-4) -3586172600*a(n-5) +52369132896*a(n-6) +1245052315520*a(n-7) -47462252573696*a(n-8) +199722871680128*a(n-9) +11579233807503360*a(n-10) -161516422622031360*a(n-11) -781406452093941760*a(n-12) +30335388582357307392*a(n-13) -102551789828754223104*a(n-14) -2499075111791254233088*a(n-15) +21696171687994926645248*a(n-16) +73586462799086990983168*a(n-17) -1576005803911676145565696*a(n-18) +2408162877989904740777984*a(n-19) +55957566883111396665982976*a(n-20) -256470213770771143456718848*a(n-21) -882362368937819549787488256*a(n-22) +8451205698868439960808062976*a(n-23) -1734606525176780328074739712*a(n-24) -141028371040952846016774668288*a(n-25) +296324312967130989774499741696*a(n-26) +1198147430715508523506484641792*a(n-27) -4952845533984364757335295393792*a(n-28) -3186976950450110274831453782016*a(n-29) +40412468029396457697759830474752*a(n-30) -29248858868831293913779436257280*a(n-31) -177275840840616248911112251113472*a(n-32) +306730456012993930951282986582016*a(n-33) +365916593440879671670038106996736*a(n-34) -1252123486332919207419386477412352*a(n-35) +31455433167667604131574020308992*a(n-36) +2662103745182650392788796604153856*a(n-37) -1794384392309031579471189299429376*a(n-38) -2855274805218892553424514123300864*a(n-39) +3752560584513799228760234569760768*a(n-40) +955018952518786152205067397103616*a(n-41) -3479885196004780525644200160526336*a(n-42) +837529518152722930934794025959424*a(n-43) +1493157166737156760665543722139648*a(n-44) -855754296042631804236915409944576*a(n-45) -216580283784251054761779996393472*a(n-46) +271742943487852984902753988902912*a(n-47) -26382857255823684476961231470592*a(n-48) -32280501885628797705911908958208*a(n-49) +9223849840386162307148405538816*a(n-50) +583023965817031645837817544704*a(n-51) -526674746442027343134804934656*a(n-52) +65171585638020020911233564672*a(n-53) -1944707570813495706151550976*a(n-54) -24175560301554771538477056*a(n-55)

A204069 Number of (n+1)X(n+1) 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

8, 329, 45056, 19934369, 28864215128, 137884925726873, 2183735443548857744, 115025778364437876962225, 20195410108776255562409533352, 11837286998861556208797264551862761
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Diagonal of A204076

Examples

			Some solutions for n=4
..0..1..1..1..2....0..0..0..0..1....0..1..0..2..2....0..0..0..0..1
..1..2..1..2..0....1..0..0..1..2....0..0..2..1..2....0..2..0..1..2
..1..1..2..2..2....1..1..0..0..1....1..0..0..2..0....0..0..0..0..1
..1..2..2..1..2....0..1..1..0..0....2..1..0..0..2....1..0..2..0..0
..0..1..2..2..1....1..0..1..1..0....2..2..1..0..0....1..1..0..2..0
		
Showing 1-7 of 7 results.