cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204090 The number of 1 X n Haunted Mirror Maze puzzles with a unique solution where mirror orientation is fixed.

Original entry on oeis.org

1, 2, 8, 34, 134, 498, 1786, 6274, 21778, 75074, 257762, 882946, 3020354, 10323714, 35270530, 120467458, 411394306, 1404773378, 4796567042, 16377245698, 55916897282, 190915194882, 651831179266, 2225502715906, 7598365282306, 25942489251842, 88573293551618
Offset: 0

Views

Author

David Nacin, Jan 10 2012

Keywords

Comments

Since the uniqueness of a solution is unaffected by the orientation of the mirrors in this 1 X n case, we assume mirror orientation is fixed for this sequence.
Connected to A204089, which counts the 1 X n boards with unique solutions that end in a mirror. Dropping the mirror orientation restriction would give A204092. Dropping the orientation restriction and requiring a mirror in the last slot gives A204091.

Examples

			For n=3 we would get the following 34 boards with unique solutions:
('Z', 'Z', '/')
('Z', 'G', '/')
('Z', '/', 'Z')
('Z', '/', 'V')
('Z', '/', 'G')
('Z', '/', '/')
('V', 'V', '/')
('V', 'G', '/')
('V', '/', 'Z')
('V', '/', 'V')
('V', '/', 'G')
('V', '/', '/')
('G', 'Z', '/')
('G', 'V', '/')
('G', 'G', 'G')
('G', 'G', '/')
('G', '/', 'Z')
('G', '/', 'V')
('G', '/', 'G')
('G', '/', '/')
('/', 'Z', 'Z')
('/', 'Z', 'G')
('/', 'Z', '/')
('/', 'V', 'V')
('/', 'V', 'G')
('/', 'V', '/')
('/', 'G', 'Z')
('/', 'G', 'V')
('/', 'G', 'G')
('/', 'G', '/')
('/', '/', 'Z')
('/', '/', 'V')
('/', '/', 'G')
('/', '/', '/')
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -16, 14, -4}, {1, 2, 8, 34}, 40]
  • PARI
    Vec((1-5*x+10*x^2-4*x^3) / ((1-x)*(1-2*x)*(1-4*x+2*x^2)) + O(x^30)) \\ Colin Barker, Nov 26 2016
  • Python
    def a(n, d={0:1,1:2,2:8,3:34}):
     if n in d:
      return d[n]
     d[n]=7*a(n-1) - 16*a(n-2) + 14*a(n-3) - 4*a(n-4)
     return d[n]
    
  • Python
    #Produces a(n) through enumeration and also displays boards:
    def Hprint(n):
     print('The following generate boards with a unique solution')
     s=0
     for x in product(['Z','V','G','/'],repeat=n):
      #Taking care of the no mirror case
      if '/' not in x:
       if 'Z' not in x and 'V' not in x:
        s+=1
        print(x)
      else:
       #Splitting x up into a list pieces
       y=list(x)
       z=list()
       while y:
        if '/' in y:
         if y[0] != '/': #Don't need to add blank pieces to z
          z.append(y[:y.index('/')])
         y=y[y.index('/')+1:]
        else:
         z.append(y)
         y=[]
       #For each element in the list checking for Z&V together
       goodword=True
       for w in z:
        if 'Z' in w and 'V' in w:
         goodword=False
       if goodword:
        s+=1
        print(x)
     return s
    

Formula

G.f.: (1 - 5*x + 10*x^2 - 4*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)).
a(n) = A204089(n+1) - 2^(n+1) + 2.
a(n) = 7*a(n-1) - 16*a(n-2) + 14*a(n-3) - 4*a(n-4), a(0)=1, a(1)=2, a(2)=8, a(3)=34.
a(n) = 2 - 2^(1+n) + ((2+sqrt(2))^(1+n) - (2-sqrt(2))^(1+n))/(2*sqrt(2)). - Colin Barker, Nov 26 2016