cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204097 Numbers that are 6-persistent but not 7-persistent.

Original entry on oeis.org

36492195078, 48602175913, 48613021759, 49021758613, 49130217586, 49219635078, 53829197460, 53829301746, 53928301746, 54601738293, 54601739283, 58829301746, 59288301746, 60174538293, 60174539283, 60174588293, 60174592883, 64820935179
Offset: 1

Views

Author

Hans Havermann, Jan 10 2012

Keywords

Comments

A number n is k-persistent iff all of {n, 2n,..., kn} are pandigital (in the sense of A171102).

References

  • Ross Honsberger, More Mathematical Morsels, Mathematical Association of America, 1991, pages 15-18.

Crossrefs

Cf. A171102 (pandigital), A051264 (1-persistent), A051018 (2-persistent), A051019 (3-persistent), A051020 (4-persistent), A204096 (5-persistent), A204047 (smallest n-persistent).