This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204111 #11 Aug 02 2019 04:12:26 %S A204111 2,-1,5,-5,1,10,-20,9,-1,44,-100,62,-14,1,104,-328,330,-128,20,-1,656, %T A204111 -2208,2476,-1176,263,-27,1,2624,-10144,13992,-8880,2804,-452,35,-1, %U A204111 15744,-66112,102384,-75760,29512,-6336,744,-44,1,67584 %N A204111 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(i+1, j+1) (A204030). %C A204111 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204111 (For references regarding interlacing roots, see A202605.) %e A204111 Top of the array: %e A204111 2, -1; %e A204111 5, -5, 1; %e A204111 10, -20, 9, -1; %e A204111 44, -100, 62, -14, 1; %t A204111 f[i_, j_] := GCD[i + 1, j + 1]; %t A204111 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204111 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204111 Flatten[Table[f[i, n + 1 - i], %t A204111 {n, 1, 15}, {i, 1, n}]] (* A204030 *) %t A204111 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204111 c[n_] := CoefficientList[p[n], x] %t A204111 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204111 Table[c[n], {n, 1, 12}] %t A204111 Flatten[%] (* A204111 *) %t A204111 TableForm[Table[c[n], {n, 1, 10}]] %Y A204111 Cf. A204030, A202605, A204016. %K A204111 tabl,sign %O A204111 1,1 %A A204111 _Clark Kimberling_, Jan 11 2012