A204112 Symmetric matrix based on f(i,j) = gcd(F(i+1), F(j+1)), where F=A000045 (Fibonacci numbers), by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 2 1 1 2 1 1 1 3 1 1 1 1 1 1 5 1 1 1 2 1 1 8 1 1 1 1 1 1 13
Programs
-
Mathematica
u[n_] := Fibonacci[n + 1] f[i_, j_] := GCD[u[i], u[j]]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8 X 8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204112 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204113 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments