This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204113 #12 Aug 02 2019 04:12:45 %S A204113 1,-1,1,-3,1,2,-8,6,-1,8,-36,35,-11,1,48,-232,274,-116,19,-1,576, %T A204113 -2880,3620,-1728,358,-32,1,10368,-52992,70632,-37192,8906,-1016,53, %U A204113 -1,331776,-1716480,2354112,-1294352,332812,-42924,2805 %N A204113 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the matrix at A204112, given by f(i,j) = gcd(F(i+1), F(j+1)), where F=A000045 (Fibonacci numbers). %C A204113 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204113 (For references regarding interlacing roots, see A202605.) %e A204113 Top of the array: %e A204113 1, -1; %e A204113 1, -3, 1; %e A204113 2, -8, 6, -1; %e A204113 8, -36, 35, -11, 1; %t A204113 u[n_] := Fibonacci[n + 1] %t A204113 f[i_, j_] := GCD[u[i], u[j]]; %t A204113 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204113 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204113 Flatten[Table[f[i, n + 1 - i], %t A204113 {n, 1, 15}, {i, 1, n}]] (* A204112 *) %t A204113 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204113 c[n_] := CoefficientList[p[n], x] %t A204113 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204113 Table[c[n], {n, 1, 12}] %t A204113 Flatten[%] (* A204113 *) %t A204113 TableForm[Table[c[n], {n, 1, 10}]] %Y A204113 Cf. A204112, A202605, A204016. %K A204113 tabl,sign %O A204113 1,4 %A A204113 _Clark Kimberling_, Jan 11 2012