cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204114 Symmetric matrix based on f(i,j) = gcd(L(i), L(j)), where L=A000032 (Lucas numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204114 represents the matrix M given by f(i,j) = gcd(L(i+1), L(j+1)) for i >= 1 and j >= 1. See A204115 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1  1
  1  3  1  1  1
  1  1  4  1  1
  1  1  1  7  1
  1  1  1  1 11
		

Crossrefs

Programs

  • Mathematica
    u[n_] := LucasL[n]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204114 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204115 *)
    TableForm[Table[c[n], {n, 1, 10}]]