This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204115 #10 Aug 02 2019 04:12:37 %S A204115 1,-1,2,-4,1,6,-16,8,-1,36,-108,69,-15,1,360,-1152,834,-230,26,-1, %T A204115 5280,-17696,14368,-4668,682,-44,1,147840,-506048,426568,-147856, %U A204115 24262,-1952,73,-1,6800640,-23573888,20317360 %N A204115 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix from A204114, given by gcd(L(i+1), L(j+1)), where L=A000032 (Lucas numbers). %C A204115 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204115 (For references regarding interlacing roots, see A202605.) %e A204115 Top of the array: %e A204115 1, -1; %e A204115 2, -4, 1; %e A204115 6, -16, 8, -1; %e A204115 36, -108, 69, -15, 1; %t A204115 u[n_] := LucasL[n] %t A204115 f[i_, j_] := GCD[u[i], u[j]]; %t A204115 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204115 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204115 Flatten[Table[f[i, n + 1 - i], %t A204115 {n, 1, 15}, {i, 1, n}]] (* A204114 *) %t A204115 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204115 c[n_] := CoefficientList[p[n], x] %t A204115 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204115 Table[c[n], {n, 1, 12}] %t A204115 Flatten[%] (* A204115 *) %t A204115 TableForm[Table[c[n], {n, 1, 10}]] %Y A204115 Cf. A204114, A202605, A204016. %K A204115 tabl,sign %O A204115 1,3 %A A204115 _Clark Kimberling_, Jan 11 2012