This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204116 #9 Aug 02 2019 04:12:34 %S A204116 1,1,1,1,3,1,1,1,1,1,1,3,7,3,1,1,1,1,1,1,1,1,3,1,15,1,3,1,1,1,7,1,1,7, %T A204116 1,1,1,3,1,3,31,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,3,7,15,1,63,1,15,7,3,1, %U A204116 1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,3,127,3,1,3,1,3,1,1,1,7,1 %N A204116 Symmetric matrix based on f(i,j) = gcd(2^i-1, 2^j-1), by antidiagonals. %C A204116 A204116 represents the matrix M given by f(i,j) = gcd(2^i-1, 2^j-1) for i >= 1 and j >= 1. See A204117 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204116 Northwest corner: %e A204116 1 1 1 1 %e A204116 1 3 1 3 %e A204116 1 1 7 1 %e A204116 1 3 1 15 %t A204116 f[i_, j_] := GCD[2^i - 1, 2^j - 1]; %t A204116 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204116 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204116 Flatten[Table[f[i, n + 1 - i], %t A204116 {n, 1, 15}, {i, 1, n}]] (* A204116 *) %t A204116 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204116 c[n_] := CoefficientList[p[n], x] %t A204116 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204116 Table[c[n], {n, 1, 12}] %t A204116 Flatten[%] (* A204117 *) %t A204116 TableForm[Table[c[n], {n, 1, 10}]] %Y A204116 Cf. A204117, A204016, A202453. %K A204116 nonn,tabl %O A204116 1,5 %A A204116 _Clark Kimberling_, Jan 11 2012