This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204117 #10 Aug 02 2019 04:12:31 %S A204117 1,-1,2,-4,1,12,-28,11,-1,144,-360,182,-26,1,4320,-11088,5940,-984,57, %T A204117 -1,233280,-616032,348768,-64728,4506,-120,1,29393280,-78086592, %U A204117 44775936,-8554608,636444,-19740,247,-1,7054387200 %N A204117 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(2^i-1, 2^j-1) (A204116). %C A204117 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204117 (For references regarding interlacing roots, see A202605.) %e A204117 Top of the array: %e A204117 1, -1; %e A204117 2, -4, 1; %e A204117 12, -28, 11, -1; %e A204117 144, -360, 182, -26, 1; %t A204117 f[i_, j_] := GCD[2^i - 1, 2^j - 1]; %t A204117 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204117 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204117 Flatten[Table[f[i, n + 1 - i], %t A204117 {n, 1, 15}, {i, 1, n}]] (* A204116 *) %t A204117 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204117 c[n_] := CoefficientList[p[n], x] %t A204117 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204117 Table[c[n], {n, 1, 12}] %t A204117 Flatten[%] (* A204117 *) %t A204117 TableForm[Table[c[n], {n, 1, 10}]] %Y A204117 Cf. A204116, A202605, A204016. %K A204117 tabl,sign %O A204117 1,3 %A A204117 _Clark Kimberling_, Jan 11 2012