This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204119 #11 Aug 02 2019 04:13:16 %S A204119 2,-1,5,-5,1,22,-28,10,-1,140,-204,95,-17,1,1448,-2272,1210,-278,28, %T A204119 -1,17856,-29680,17444,-4732,637,-41,1,291456,-504832,317576,-96040, %U A204119 15386,-1328,58,-1,5338368,-9577728,6373968 %N A204119 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(prime(i), prime(j)) (A204118). %C A204119 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204119 (For references regarding interlacing roots, see A202605.) %e A204119 Top of the array: %e A204119 2, -1; %e A204119 5, -5, 1; %e A204119 22, -28, 10, -1; %e A204119 140, -204, 95, -17, 1; %t A204119 f[i_, j_] := GCD[Prime[i], Prime[j]]; %t A204119 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204119 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204119 Flatten[Table[f[i, n + 1 - i], %t A204119 {n, 1, 15}, {i, 1, n}]] (* A204118 *) %t A204119 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204119 c[n_] := CoefficientList[p[n], x] %t A204119 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204119 Table[c[n], {n, 1, 12}] %t A204119 Flatten[%] (* A204119 *) %t A204119 TableForm[Table[c[n], {n, 1, 10}]] %Y A204119 Cf. A204118, A202605, A204016. %K A204119 tabl,sign %O A204119 1,1 %A A204119 _Clark Kimberling_, Jan 11 2012