This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204121 #10 Aug 02 2019 04:13:20 %S A204121 3,-1,14,-8,1,92,-68,15,-1,968,-816,230,-26,1,12096,-11248,3740,-564, %T A204121 39,-1,199296,-198400,73544,-13192,1222,-56,1,3679488,-3877632, %U A204121 1567824,-320304,36160,-2280,75,-1,82607616,-91008000 %N A204121 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(prime(i+1), prime(j+1)) (A204120). %C A204121 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204121 (For references regarding interlacing roots, see A202605.) %e A204121 Top of the array: %e A204121 3, -1; %e A204121 14, -8, 1; %e A204121 92, -68, 15, -1; %e A204121 968, -816, 230, -26, 1; %t A204121 f[i_, j_] := GCD[Prime[i + 1], Prime[j + 1]]; %t A204121 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204121 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204121 Flatten[Table[f[i, n + 1 - i], %t A204121 {n, 1, 15}, {i, 1, n}]] (* A204120 *) %t A204121 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204121 c[n_] := CoefficientList[p[n], x] %t A204121 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204121 Table[c[n], {n, 1, 12}] %t A204121 Flatten[%] (* A204121 *) %t A204121 TableForm[Table[c[n], {n, 1, 10}]] %Y A204121 Cf. A204120, A202605, A204016. %K A204121 tabl,sign %O A204121 1,1 %A A204121 _Clark Kimberling_, Jan 11 2012