This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204122 #10 Aug 02 2019 04:13:05 %S A204122 1,-1,1,-3,1,2,-8,7,-1,8,-36,43,-15,1,64,-304,414,-198,31,-1,1024, %T A204122 -4992,7224,-3960,849,-63,1,32768,-161792,241088,-140864,34674,-3516, %U A204122 127,-1,2097152,-10420224,15752192,-9492480,2493640,-290412 %N A204122 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(2^(i-1), 2^(j-1)) (A144464). %C A204122 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204122 (For references regarding interlacing roots, see A202605.) %e A204122 Top of the array: %e A204122 1, -1; %e A204122 1, -3, 1; %e A204122 2, -8, 7, -1; %e A204122 8, -36, 43, -15, 1; %t A204122 f[i_, j_] := GCD[2^(i - 1), 2^(j - 1)]; %t A204122 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204122 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204122 Flatten[Table[f[i, n + 1 - i], %t A204122 {n, 1, 15}, {i, 1, n}]] (* A144464 *) %t A204122 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204122 c[n_] := CoefficientList[p[n], x] %t A204122 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204122 Table[c[n], {n, 1, 12}] %t A204122 Flatten[%] (* A204122 *) %t A204122 TableForm[Table[c[n], {n, 1, 10}]] %Y A204122 Cf. A144464, A202605, A204016. %K A204122 tabl,sign %O A204122 1,4 %A A204122 _Clark Kimberling_, Jan 11 2012