This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204123 #11 Jan 27 2018 09:47:44 %S A204123 1,2,2,3,1,3,4,1,1,4,5,2,1,2,5,6,2,1,1,2,6,7,3,1,1,1,3,7,8,3,2,1,1,2, %T A204123 3,8,9,4,2,1,1,1,2,4,9,10,4,2,1,1,1,1,2,4,10,11,5,3,2,1,1,1,2,3,5,11, %U A204123 12,5,3,2,1,1,1,1,2,3,5,12,13,6,3,2,1,1,1,1,1,2,3,6,13,14,6,4,2 %N A204123 Symmetric matrix based on f(i,j)=max([i/j],[j/i]), where [ ]=floor, by antidiagonals. %C A204123 This sequence represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1. See A204124 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %H A204123 G. C. Greubel, <a href="/A204123/b204123.txt">Table of n, a(n) for the first 100 aintidiagonals</a> %e A204123 Northwest corner: %e A204123 1 2 3 4 5 6 %e A204123 2 1 1 2 2 3 %e A204123 3 1 1 1 1 2 %e A204123 4 2 1 1 1 1 %e A204123 5 2 1 1 1 1 %e A204123 6 3 2 1 1 1 %t A204123 f[i_, j_] := Max[Floor[i/j], Floor[j/i]]; %t A204123 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204123 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204123 Flatten[Table[f[i, n + 1 - i], %t A204123 {n, 1, 15}, {i, 1, n}]] (* A204123 *) %t A204123 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204123 c[n_] := CoefficientList[p[n], x] %t A204123 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204123 Table[c[n], {n, 1, 12}] %t A204123 Flatten[%] (* A204124 *) %t A204123 TableForm[Table[c[n], {n, 1, 10}]] %Y A204123 Cf. A204124, A204016, A202453. %K A204123 nonn,tabl %O A204123 1,2 %A A204123 _Clark Kimberling_, Jan 11 2012