This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204125 #5 Mar 30 2012 18:58:07 %S A204125 1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1, %T A204125 1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,1,1,1,1,1,1, %U A204125 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A204125 Symmetric matrix based on f(i,j)=(i if i=j and 1 otherwise), by antidiagonals. %C A204125 A204125 represents the matrix M given by f(i,j)=max([i/j],[j/i]) for i>=1 and j>=1. See A204126 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204125 Northwest corner: %e A204125 1 1 1 1 1 1 %e A204125 1 2 1 1 1 1 %e A204125 1 1 3 1 1 1 %e A204125 1 1 1 4 1 1 %e A204125 1 1 1 1 5 1 %e A204125 1 1 1 1 1 6 %t A204125 f[i_, j_] := 1; f[i_, i_] := i; %t A204125 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204125 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204125 Flatten[Table[f[i, n + 1 - i], %t A204125 {n, 1, 15}, {i, 1, n}]] (* A204125 *) %t A204125 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204125 c[n_] := CoefficientList[p[n], x] %t A204125 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204125 Table[c[n], {n, 1, 12}] %t A204125 Flatten[%] (* A204126 *) %t A204125 TableForm[Table[c[n], {n, 1, 10}]] %Y A204125 Cf. A204126, A204016, A202453. %K A204125 nonn,tabl %O A204125 1,5 %A A204125 _Clark Kimberling_, Jan 11 2012