This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204126 #7 Jul 12 2012 00:39:58 %S A204126 1,-1,1,-3,1,2,-8,6,-1,6,-28,29,-10,1,24,-124,155,-75,15,-1,120,-668, %T A204126 949,-565,160,-21,1,720,-4248,6636,-4564,1610,-301,28,-1,5040,-31176, %U A204126 52464,-40208,16569,-3892,518,-36,1,40320,-259488,463956 %N A204126 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=(i if i=j and 1 otherwise) (A204125). %C A204126 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204126 (For references regarding interlacing roots, see A202605.) %e A204126 Top of the array: %e A204126 1....-1 %e A204126 1....-3.....1 %e A204126 2....-8.....6....-1 %e A204126 6....-28....29...-10...1 %t A204126 f[i_, j_] := 1; f[i_, i_] := i; %t A204126 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204126 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204126 Flatten[Table[f[i, n + 1 - i], %t A204126 {n, 1, 15}, {i, 1, n}]] (* A204125 *) %t A204126 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204126 c[n_] := CoefficientList[p[n], x] %t A204126 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204126 Table[c[n], {n, 1, 12}] %t A204126 Flatten[%] (* A204126 *) %t A204126 TableForm[Table[c[n], {n, 1, 10}]] %Y A204126 Cf. A204125, A202605, A204016. %K A204126 tabl,sign %O A204126 1,4 %A A204126 _Clark Kimberling_, Jan 11 2012